BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37724292)

  • 21. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I - Alternate Formulations.
    Almeida ES; Spilker RL
    Comput Methods Biomech Biomed Engin; 1997; 1(1):25-46. PubMed ID: 11264795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte.
    Baaijens FP; Trickey WR; Laursen TA; Guilak F
    Ann Biomed Eng; 2005 Apr; 33(4):494-501. PubMed ID: 15909655
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unified one-dimensional finite element for the analysis of hyperelastic soft materials and structures.
    Pagani A; Carrera E
    Mech Adv Mat Struct; 2023; 30(2):342-355. PubMed ID: 36798852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-order least-square-based finite-difference-finite-volume method for simulation of incompressible thermal flows on arbitrary grids.
    Liu YY; Zhang HW; Yang LM; Shu C
    Phys Rev E; 2019 Dec; 100(6-1):063308. PubMed ID: 31962409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The variational multiscale formulation for the fully-implicit log-morphology equation as a tensor-based blood damage model.
    Haßler S; Pauli L; Behr M
    Int J Numer Method Biomed Eng; 2019 Dec; 35(12):e3262. PubMed ID: 31493337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.
    Wittek A; Joldes G; Couton M; Warfield SK; Miller K
    Prog Biophys Mol Biol; 2010 Dec; 103(2-3):292-303. PubMed ID: 20868706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the stability of cardiac mechanical simulations.
    Land S; Niederer SA; Lamata P; Smith NP
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):939-947. PubMed ID: 25474804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solution of the nonlinear elasticity imaging inverse problem: The incompressible case.
    Goenezen S; Barbone P; Oberai AA
    Comput Methods Appl Mech Eng; 2011 Mar; 200(13-16):1406-1420. PubMed ID: 21603066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Versatile stabilized finite element formulations for nearly and fully incompressible solid mechanics.
    Karabelas E; Haase G; Plank G; Augustin CM
    Comput Mech; 2020 Jan; 65(1):193-215. PubMed ID: 31975744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A cell-centered finite volume formulation of geometrically exact Simo-Reissner beams with arbitrary initial curvatures.
    Bali S; Tuković Ž; Cardiff P; Ivanković A; Pakrashi V
    Int J Numer Methods Eng; 2022 Sep; 123(17):3950-3973. PubMed ID: 36247933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Error Analysis of a PFEM Based on the Euler Semi-Implicit Scheme for the Unsteady MHD Equations.
    Shi K; Su H; Feng X
    Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On modelling large deformations of heterogeneous biological tissues using a mixed finite element formulation.
    Wu T; Hung AP; Hunter P; Mithraratne K
    Comput Methods Biomech Biomed Engin; 2015; 18(5):477-84. PubMed ID: 23895255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment.
    Gültekin O; Sommer G; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(15):1647-64. PubMed ID: 27146848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lagrangian particle path formulation of multilayer shallow-water flows dynamically coupled to vessel motion.
    Turner MR; Bridges TJ; Alemi Ardakani H
    J Eng Math; 2017; 106(1):75-106. PubMed ID: 32009671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case.
    Guo Z; Wang R; Xu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033313. PubMed ID: 25871252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An active strain electromechanical model for cardiac tissue.
    Nobile F; Quarteroni A; Ruiz-Baier R
    Int J Numer Method Biomed Eng; 2012 Jan; 28(1):52-71. PubMed ID: 25830205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On nonlinear viscoelastic deformations: a reappraisal of Fung's quasi-linear viscoelastic model.
    De Pascalis R; Abrahams ID; Parnell WJ
    Proc Math Phys Eng Sci; 2014 Jun; 470(2166):20140058. PubMed ID: 24910527
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.
    Chan B; Donzelli PS; Spilker RL
    Ann Biomed Eng; 2000 Jun; 28(6):589-97. PubMed ID: 10983705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics.
    Hadjicharalambous M; Lee J; Smith NP; Nordsletten DA
    Comput Methods Appl Mech Eng; 2014 Jun; 274(100):213-236. PubMed ID: 25187672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.