These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Predictive etiological classification of acute ischemic stroke through interpretable machine learning algorithms: a multicenter, prospective cohort study. Chen S; Yang X; Gu H; Wang Y; Xu Z; Jiang Y; Wang Y BMC Med Res Methodol; 2024 Sep; 24(1):199. PubMed ID: 39256656 [TBL] [Abstract][Full Text] [Related]
23. A novel atrial volume reduction technique to enhance the Cox maze procedure: initial results. Marui A; Nishina T; Tambara K; Saji Y; Shimamoto T; Nishioka M; Ikeda T; Komeda M J Thorac Cardiovasc Surg; 2006 Nov; 132(5):1047-53. PubMed ID: 17059922 [TBL] [Abstract][Full Text] [Related]
24. Predictive model and risk analysis for peripheral vascular disease in type 2 diabetes mellitus patients using machine learning and shapley additive explanation. Liu L; Bi B; Cao L; Gui M; Ju F Front Endocrinol (Lausanne); 2024; 15():1320335. PubMed ID: 38481447 [TBL] [Abstract][Full Text] [Related]
25. Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery. Chen X; Pan J; Li Y; Tang R Aging Clin Exp Res; 2023 Nov; 35(11):2643-2656. PubMed ID: 37733228 [TBL] [Abstract][Full Text] [Related]
26. Impact of preoperative atrial fibrillation on mortality and cardiovascular outcomes of mechanical mitral valve replacement for rheumatic mitral valve disease. Wang B; Xu ZY; Han L; Zhang GX; Lu FL; Song ZG Eur J Cardiothorac Surg; 2013 Mar; 43(3):513-9. PubMed ID: 22621873 [TBL] [Abstract][Full Text] [Related]
27. Prognosis prediction and risk stratification of transarterial chemoembolization or intraarterial chemotherapy for unresectable hepatocellular carcinoma based on machine learning. Liu W; Wei R; Chen J; Li Y; Pang H; Zhang W; An C; Li C Eur Radiol; 2024 Aug; 34(8):5094-5107. PubMed ID: 38291256 [TBL] [Abstract][Full Text] [Related]
28. A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study. Wang J; Chen H; Wang H; Liu W; Peng D; Zhao Q; Xiao M J Med Internet Res; 2023 Apr; 25():e43815. PubMed ID: 37023416 [TBL] [Abstract][Full Text] [Related]
29. Incremental risk of the Cox-maze IV procedure for patients with atrial fibrillation undergoing mitral valve surgery. Saint LL; Damiano RJ; Cuculich PS; Guthrie TJ; Moon MR; Munfakh NA; Maniar HS J Thorac Cardiovasc Surg; 2013 Nov; 146(5):1072-7. PubMed ID: 23998785 [TBL] [Abstract][Full Text] [Related]
30. A new machine learning approach for predicting likelihood of recurrence following ablation for atrial fibrillation from CT. Atta-Fosu T; LaBarbera M; Ghose S; Schoenhagen P; Saliba W; Tchou PJ; Lindsay BD; Desai MY; Kwon D; Chung MK; Madabhushi A BMC Med Imaging; 2021 Mar; 21(1):45. PubMed ID: 33750343 [TBL] [Abstract][Full Text] [Related]
31. Integrative transcriptomic, proteomic, and machine learning approach to identifying feature genes of atrial fibrillation using atrial samples from patients with valvular heart disease. Liu Y; Bai F; Tang Z; Liu N; Liu Q BMC Cardiovasc Disord; 2021 Jan; 21(1):52. PubMed ID: 33509101 [TBL] [Abstract][Full Text] [Related]
32. Machine learning model for predicting late recurrence of atrial fibrillation after catheter ablation. Budzianowski J; Kaczmarek-Majer K; Rzeźniczak J; Słomczyński M; Wichrowski F; Hiczkiewicz D; Musielak B; Grydz Ł; Hiczkiewicz J; Burchardt P Sci Rep; 2023 Sep; 13(1):15213. PubMed ID: 37709859 [TBL] [Abstract][Full Text] [Related]
33. Machine learning-based model to predict composite thromboembolic events among Chinese elderly patients with atrial fibrillation. Ren J; Wang H; Lai S; Shao Y; Che H; Xue Z; Qi X; Zhang S; Dai J; Wang S; Li K; Gan W; Si Q BMC Cardiovasc Disord; 2024 Aug; 24(1):420. PubMed ID: 39134969 [TBL] [Abstract][Full Text] [Related]
34. Cox-maze III procedure for atrial fibrillation during valve surgery: a single institution experience. Wang CT; Zhang L; Qin T; Xi ZL; Sun L; Wu HW; Li DM J Cardiothorac Surg; 2020 May; 15(1):111. PubMed ID: 32448312 [TBL] [Abstract][Full Text] [Related]
35. Using machine learning to identify patients at high risk of developing low bone density or osteoporosis after gastrectomy: a 10-year multicenter retrospective analysis. Zhu Y; Liu Y; Wang Q; Niu S; Wang L; Cheng C; Chen X; Liu J; Zhao S J Cancer Res Clin Oncol; 2023 Dec; 149(19):17479-17493. PubMed ID: 37897658 [TBL] [Abstract][Full Text] [Related]
36. Mitral valve surgery and atrial fibrillation: is atrial fibrillation surgery also needed? Jessurun ER; van Hemel NM; Kelder JC; Elbers S; de la Rivière AB; Defauw JJ; Ernst JM Eur J Cardiothorac Surg; 2000 May; 17(5):530-7. PubMed ID: 10814915 [TBL] [Abstract][Full Text] [Related]
37. Clinical determinants of sinus conversion by radiofrequency maze procedure for persistent atrial fibrillation in patients undergoing concomitant mitral valvular surgery. Chen MC; Chang JP; Chang HW; Chen CJ; Yang CH; Chen YH; Fu M Am J Cardiol; 2005 Dec; 96(11):1553-7. PubMed ID: 16310439 [TBL] [Abstract][Full Text] [Related]
38. Developing a Risk Prediction Model for Early Atrial Fibrillation Recurrence After Maze Procedure. Seyedhoseinpour A; Vasheghani-Farahani A; Abbasi K; Jalali A; Zahed Tajreshi F; Fazeli A; Ghorashi SM; Omidi N Crit Pathw Cardiol; 2022 Jun; 21(2):77-83. PubMed ID: 35311757 [TBL] [Abstract][Full Text] [Related]
39. Comparative Effectiveness of Machine Learning Approaches for Predicting Gastrointestinal Bleeds in Patients Receiving Antithrombotic Treatment. Herrin J; Abraham NS; Yao X; Noseworthy PA; Inselman J; Shah ND; Ngufor C JAMA Netw Open; 2021 May; 4(5):e2110703. PubMed ID: 34019087 [TBL] [Abstract][Full Text] [Related]
40. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]