These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37724423)

  • 1. Cortical and subcortical contributions to non-motor inhibitory control: an fMRI study.
    Pan X; Wang Z
    Cereb Cortex; 2023 Oct; 33(21):10909-10917. PubMed ID: 37724423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connectivity of the subthalamic nucleus and globus pallidus pars interna to regions within the speech network: a meta-analytic connectivity study.
    Manes JL; Parkinson AL; Larson CR; Greenlee JD; Eickhoff SB; Corcos DM; Robin DA
    Hum Brain Mapp; 2014 Jul; 35(7):3499-516. PubMed ID: 25050431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategy switches in proactive inhibitory control and their association with task-general and stopping-specific networks.
    Messel MS; Raud L; Hoff PK; Skaftnes CS; Huster RJ
    Neuropsychologia; 2019 Dec; 135():107220. PubMed ID: 31586553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition.
    Jahfari S; Waldorp L; van den Wildenberg WP; Scholte HS; Ridderinkhof KR; Forstmann BU
    J Neurosci; 2011 May; 31(18):6891-9. PubMed ID: 21543619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of response inhibition circuits in prodromal Huntington disease.
    Rao JA; Harrington DL; Durgerian S; Reece C; Mourany L; Koenig K; Lowe MJ; Magnotta VA; Long JD; Johnson HJ; Paulsen JS; Rao SM
    Cortex; 2014 Sep; 58():72-85. PubMed ID: 24959703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential inhibitory control processes assessed through simultaneous EEG-fMRI.
    Baumeister S; Hohmann S; Wolf I; Plichta MM; Rechtsteiner S; Zangl M; Ruf M; Holz N; Boecker R; Meyer-Lindenberg A; Holtmann M; Laucht M; Banaschewski T; Brandeis D
    Neuroimage; 2014 Jul; 94():349-359. PubMed ID: 24473101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplified engagement of prefrontal cortex during control of voluntary action in Tourette syndrome.
    Rae CL; Parkinson J; Betka S; Gouldvan Praag CD; Bouyagoub S; Polyanska L; Larsson DEO; Harrison NA; Garfinkel SN; Critchley HD
    Brain Commun; 2020; 2(2):fcaa199. PubMed ID: 33409490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segregating attention from response control when performing a motor inhibition task: Segregating attention from response control.
    Meffert H; Hwang S; Nolan ZT; Chen G; Blair JR
    Neuroimage; 2016 Feb; 126():27-38. PubMed ID: 26584863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study.
    Dieterich M; Bucher SF; Seelos KC; Brandt T
    Brain; 1998 Aug; 121 ( Pt 8)():1479-95. PubMed ID: 9712010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociable attentional and inhibitory networks of dorsal and ventral areas of the right inferior frontal cortex: a combined task-specific and coordinate-based meta-analytic fMRI study.
    Sebastian A; Jung P; Neuhoff J; Wibral M; Fox PT; Lieb K; Fries P; Eickhoff SB; Tüscher O; Mobascher A
    Brain Struct Funct; 2016 Apr; 221(3):1635-51. PubMed ID: 25637472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased cortical and subcortical response to inhibition control after sleep deprivation.
    Zhao R; Zhang X; Fei N; Zhu Y; Sun J; Liu P; Yang X; Qin W
    Brain Imaging Behav; 2019 Jun; 13(3):638-650. PubMed ID: 29748772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical and subcortical areas involved in the regulation of reach movement speed in the human brain: An fMRI study.
    Shirinbayan SI; Dreyer AM; Rieger JW
    Hum Brain Mapp; 2019 Jan; 40(1):151-162. PubMed ID: 30251771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Executive functions with different motor outputs in somatosensory Go/Nogo tasks: an event-related functional MRI study.
    Nakata H; Sakamoto K; Ferretti A; Gianni Perrucci M; Del Gratta C; Kakigi R; Romani GL
    Brain Res Bull; 2008 Oct; 77(4):197-205. PubMed ID: 18722517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common Neural Network for Different Functions: An Investigation of Proactive and Reactive Inhibition.
    Zhang F; Iwaki S
    Front Behav Neurosci; 2019; 13():124. PubMed ID: 31231199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus.
    Aron AR; Poldrack RA
    J Neurosci; 2006 Mar; 26(9):2424-33. PubMed ID: 16510720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A functional MRI study of motor dysfunction in Friedreich's ataxia.
    Akhlaghi H; Corben L; Georgiou-Karistianis N; Bradshaw J; Delatycki MB; Storey E; Egan GF
    Brain Res; 2012 Aug; 1471():138-54. PubMed ID: 22771856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subthalamic nucleus involvement in executive functions with increased cognitive load: a subthalamic nucleus and anterior cingulate cortex depth recording study.
    Aulická SR; Jurák P; Chládek J; Daniel P; Halámek J; Baláž M; Bočková M; Chrastina J; Rektor I
    J Neural Transm (Vienna); 2014 Oct; 121(10):1287-96. PubMed ID: 24658745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A large scale (N=102) functional neuroimaging study of error processing in a Go/NoGo task.
    Steele VR; Claus ED; Aharoni E; Harenski C; Calhoun VD; Pearlson G; Kiehl KA
    Behav Brain Res; 2014 Jul; 268():127-38. PubMed ID: 24726752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain functional connectivity during storage based on resting state functional magnetic resonance imaging with synchronous urodynamic testing in healthy volunteers.
    Zhao L; Liao L; Gao Y
    Brain Imaging Behav; 2021 Jun; 15(3):1676-1684. PubMed ID: 32725470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of individual basal ganglia nuclei in force amplitude generation.
    Spraker MB; Yu H; Corcos DM; Vaillancourt DE
    J Neurophysiol; 2007 Aug; 98(2):821-34. PubMed ID: 17567775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.