BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37725037)

  • 1. Unravelling Surface Modification Strategies for Preventing Medical Device-Induced Thrombosis.
    Luu CH; Nguyen NT; Ta HT
    Adv Healthc Mater; 2024 Jan; 13(1):e2301039. PubMed ID: 37725037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemocompatibility studies on a degradable polar hydrophobic ionic polyurethane (D-PHI).
    Brockman KS; Kizhakkedathu JN; Santerre JP
    Acta Biomater; 2017 Jan; 48():368-377. PubMed ID: 27818307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The blood compatibility challenge. Part 1: Blood-contacting medical devices: The scope of the problem.
    Jaffer IH; Weitz JI
    Acta Biomater; 2019 Aug; 94():2-10. PubMed ID: 31226480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heparin coatings for improving blood compatibility of medical devices.
    Biran R; Pond D
    Adv Drug Deliv Rev; 2017 Mar; 112():12-23. PubMed ID: 28042080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Medical device-induced thrombosis: what causes it and how can we prevent it?
    Jaffer IH; Fredenburgh JC; Hirsh J; Weitz JI
    J Thromb Haemost; 2015 Jun; 13 Suppl 1():S72-81. PubMed ID: 26149053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Device thrombosis and pre-clinical blood flow models for assessing antithrombogenic efficacy of drug-device combinations.
    Sukavaneshvar S
    Adv Drug Deliv Rev; 2017 Mar; 112():24-34. PubMed ID: 27496706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual-action nitric oxide-releasing slippery surface for extracorporeal organ support: Dynamic in vitro hemocompatibility evaluation.
    Roberts TR; Harea GT; Zang Y; Devine RP; Maffe P; Handa H; Batchinsky AI
    J Biomed Mater Res B Appl Biomater; 2023 Apr; 111(4):923-932. PubMed ID: 36404401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses.
    Xu LC; Li Z; Tian Z; Chen C; Allcock HR; Siedlecki CA
    Acta Biomater; 2018 Feb; 67():87-98. PubMed ID: 29229544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for Improving Endothelial Cell Adhesion to Blood-Contacting Medical Devices.
    Wolfe JT; Shradhanjali A; Tefft BJ
    Tissue Eng Part B Rev; 2022 Oct; 28(5):1067-1092. PubMed ID: 34693761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity.
    Brash JL; Horbett TA; Latour RA; Tengvall P
    Acta Biomater; 2019 Aug; 94():11-24. PubMed ID: 31226477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Quest for Nonthrombotic Surface Modifications to Achieve Hemocompatibility of Implantable Devices.
    Tchouta LN; Bonde PN
    ASAIO J; 2015; 61(6):623-34. PubMed ID: 26366685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heparinized anticoagulant coatings based on polyphenol-amine inspired chemistry for blood-contacting catheters.
    Zhang Y; Zhang L; Duan S; Hu Y; Ding X; Zhang Y; Li Y; Wu Y; Ding X; Xu FJ
    J Mater Chem B; 2022 Mar; 10(11):1795-1804. PubMed ID: 35244123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification for improved blood compatibility.
    Jacobs H; Grainger D; Okano T; Kim SW
    Artif Organs; 1988 Dec; 12(6):506-7. PubMed ID: 3063242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved hemocompatibility and reduced bacterial adhesion on superhydrophobic titania nanoflower surfaces.
    Montgomerie Z; Popat KC
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111503. PubMed ID: 33321602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress in Application of Heparin Coating in Blood Contact Medical Devices].
    Yan T; Yan W
    Zhongguo Yi Liao Qi Xie Za Zhi; 2023 May; 47(3):288-293. PubMed ID: 37288630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteins, platelets, and blood coagulation at biomaterial interfaces.
    Xu LC; Bauer JW; Siedlecki CA
    Colloids Surf B Biointerfaces; 2014 Dec; 124():49-68. PubMed ID: 25448722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and hemocompatibility testing of nitric oxide releasing polymers using a rabbit model of thrombogenicity.
    Major TC; Handa H; Annich GM; Bartlett RH
    J Biomater Appl; 2014 Oct; 29(4):479-501. PubMed ID: 24934500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Relation Between Protein Adsorption and Hemocompatibility of Antifouling Polymer Brushes.
    Riedelová Z; de Los Santos Pereira A; Svoboda J; Pop-Georgievski O; Májek P; Pečánková K; Dyčka F; Rodriguez-Emmenegger C; Riedel T
    Macromol Biosci; 2022 Nov; 22(11):e2200247. PubMed ID: 35917216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of nonthrombogenic polymer surfaces for blood-contacting medical devices.
    Kim SW; Jacobs H
    Blood Purif; 1996; 14(5):357-72. PubMed ID: 8894131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface fluorination of polylactide as a path to improve platelet associated hemocompatibility.
    Khalifehzadeh R; Ciridon W; Ratner BD
    Acta Biomater; 2018 Sep; 78():23-35. PubMed ID: 30036719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.