These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 37725037)

  • 1. Unravelling Surface Modification Strategies for Preventing Medical Device-Induced Thrombosis.
    Luu CH; Nguyen NT; Ta HT
    Adv Healthc Mater; 2024 Jan; 13(1):e2301039. PubMed ID: 37725037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemocompatibility studies on a degradable polar hydrophobic ionic polyurethane (D-PHI).
    Brockman KS; Kizhakkedathu JN; Santerre JP
    Acta Biomater; 2017 Jan; 48():368-377. PubMed ID: 27818307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The blood compatibility challenge. Part 1: Blood-contacting medical devices: The scope of the problem.
    Jaffer IH; Weitz JI
    Acta Biomater; 2019 Aug; 94():2-10. PubMed ID: 31226480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heparin coatings for improving blood compatibility of medical devices.
    Biran R; Pond D
    Adv Drug Deliv Rev; 2017 Mar; 112():12-23. PubMed ID: 28042080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Medical device-induced thrombosis: what causes it and how can we prevent it?
    Jaffer IH; Fredenburgh JC; Hirsh J; Weitz JI
    J Thromb Haemost; 2015 Jun; 13 Suppl 1():S72-81. PubMed ID: 26149053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Device thrombosis and pre-clinical blood flow models for assessing antithrombogenic efficacy of drug-device combinations.
    Sukavaneshvar S
    Adv Drug Deliv Rev; 2017 Mar; 112():24-34. PubMed ID: 27496706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual-action nitric oxide-releasing slippery surface for extracorporeal organ support: Dynamic in vitro hemocompatibility evaluation.
    Roberts TR; Harea GT; Zang Y; Devine RP; Maffe P; Handa H; Batchinsky AI
    J Biomed Mater Res B Appl Biomater; 2023 Apr; 111(4):923-932. PubMed ID: 36404401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses.
    Xu LC; Li Z; Tian Z; Chen C; Allcock HR; Siedlecki CA
    Acta Biomater; 2018 Feb; 67():87-98. PubMed ID: 29229544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for Improving Endothelial Cell Adhesion to Blood-Contacting Medical Devices.
    Wolfe JT; Shradhanjali A; Tefft BJ
    Tissue Eng Part B Rev; 2022 Oct; 28(5):1067-1092. PubMed ID: 34693761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity.
    Brash JL; Horbett TA; Latour RA; Tengvall P
    Acta Biomater; 2019 Aug; 94():11-24. PubMed ID: 31226477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Quest for Nonthrombotic Surface Modifications to Achieve Hemocompatibility of Implantable Devices.
    Tchouta LN; Bonde PN
    ASAIO J; 2015; 61(6):623-34. PubMed ID: 26366685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heparinized anticoagulant coatings based on polyphenol-amine inspired chemistry for blood-contacting catheters.
    Zhang Y; Zhang L; Duan S; Hu Y; Ding X; Zhang Y; Li Y; Wu Y; Ding X; Xu FJ
    J Mater Chem B; 2022 Mar; 10(11):1795-1804. PubMed ID: 35244123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification for improved blood compatibility.
    Jacobs H; Grainger D; Okano T; Kim SW
    Artif Organs; 1988 Dec; 12(6):506-7. PubMed ID: 3063242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved hemocompatibility and reduced bacterial adhesion on superhydrophobic titania nanoflower surfaces.
    Montgomerie Z; Popat KC
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111503. PubMed ID: 33321602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress in Application of Heparin Coating in Blood Contact Medical Devices].
    Yan T; Yan W
    Zhongguo Yi Liao Qi Xie Za Zhi; 2023 May; 47(3):288-293. PubMed ID: 37288630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteins, platelets, and blood coagulation at biomaterial interfaces.
    Xu LC; Bauer JW; Siedlecki CA
    Colloids Surf B Biointerfaces; 2014 Dec; 124():49-68. PubMed ID: 25448722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and hemocompatibility testing of nitric oxide releasing polymers using a rabbit model of thrombogenicity.
    Major TC; Handa H; Annich GM; Bartlett RH
    J Biomater Appl; 2014 Oct; 29(4):479-501. PubMed ID: 24934500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Relation Between Protein Adsorption and Hemocompatibility of Antifouling Polymer Brushes.
    Riedelová Z; de Los Santos Pereira A; Svoboda J; Pop-Georgievski O; Májek P; Pečánková K; Dyčka F; Rodriguez-Emmenegger C; Riedel T
    Macromol Biosci; 2022 Nov; 22(11):e2200247. PubMed ID: 35917216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of nonthrombogenic polymer surfaces for blood-contacting medical devices.
    Kim SW; Jacobs H
    Blood Purif; 1996; 14(5):357-72. PubMed ID: 8894131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface fluorination of polylactide as a path to improve platelet associated hemocompatibility.
    Khalifehzadeh R; Ciridon W; Ratner BD
    Acta Biomater; 2018 Sep; 78():23-35. PubMed ID: 30036719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.