BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37725053)

  • 1. Overlooked aza-S(IV) motifs: synthesis and transformations of sulfinamidines and sulfinimidate esters.
    Andresini M; Colella M; Degennaro L; Luisi R
    Org Biomol Chem; 2023 Oct; 21(38):7681-7690. PubMed ID: 37725053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dehydrogenative Imination of Low-Valent Sulfur Compounds-Fast and Scalable Synthesis of Sulfilimines, Sulfinamidines, and Sulfinimidate Esters.
    Klein M; Troglauer DL; Waldvogel SR
    JACS Au; 2023 Feb; 3(2):575-583. PubMed ID: 36873686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Sulfinamidines and Sulfinimidate Esters by Transfer of Nitrogen to Sulfenamides.
    Andresini M; Spennacchio M; Romanazzi G; Ciriaco F; Clarkson G; Degennaro L; Luisi R
    Org Lett; 2020 Sep; 22(18):7129-7134. PubMed ID: 32856457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multistep Continuous Flow Synthesis of Isolable NH
    Andresini M; Carret S; Degennaro L; Ciriaco F; Poisson JF; Luisi R
    Chemistry; 2022 Oct; 28(59):e202202066. PubMed ID: 35861934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfinimidate Esters as an Electrophilic Sulfinimidoyl Motif Source: Synthesis of
    Andresini M; Spennacchio M; Colella M; Losito G; Aramini A; Degennaro L; Luisi R
    Org Lett; 2021 Sep; 23(17):6850-6854. PubMed ID: 34387503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective Synthesis of Sulfinamidines via Asymmetric Nitrogen Transfer from N-H Oxaziridines to Sulfenamides.
    Fimm M; Saito F
    Angew Chem Int Ed Engl; 2024 May; ():e202408380. PubMed ID: 38747676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-Pot Tandem Oxidative Bromination and Amination of Sulfenamide for the Synthesis of Sulfinamidines.
    Yang GF; Huang HS; Nie XK; Zhang SQ; Cui X; Tang Z; Li GX
    J Org Chem; 2023 Apr; 88(7):4581-4591. PubMed ID: 36926918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric Synthesis of Chiral Sulfimides through the O-Alkylation of Enantioenriched Sulfinamides and Addition of Carbon Nucleophiles.
    Tsuzuki S; Kano T
    Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202300637. PubMed ID: 36807500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypervalent Iodine-Mediated Synthesis of Sulfinimidate Esters from Sulfenamides.
    Lu X; Huang G; Ye J; Bashir MA; Su J; Yang K; Liang F; Xu X
    Org Lett; 2023 Mar; 25(12):2151-2156. PubMed ID: 36946517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypervalent Iodine Mediated Synthesis of Sulfinamidines from Sulfenamides.
    Huang G; Ye J; Bashir MA; Chen Y; Chen W; Lu X
    J Org Chem; 2023 Aug; 88(16):11728-11734. PubMed ID: 37506052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isopropenyl Esters (iPEs) in Green Organic Synthesis.
    Rigo D; Masters AF; Maschmeyer T; Selva M; Fiorani G
    Chemistry; 2022 Jul; 28(40):e202200431. PubMed ID: 35385201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P-Chiral Phosphorus Ligands Based on a 2,3-Dihydrobenzo[ d][1,3]oxaphosphole Motif for Asymmetric Catalysis.
    Xu G; Senanayake CH; Tang W
    Acc Chem Res; 2019 Apr; 52(4):1101-1112. PubMed ID: 30848882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of enantioenriched aza-proline derivatives through gold(I)-catalyzed cyclization of chiral α-hydrazino esters.
    Bouvet S; Moreau X; Coeffard V; Greck C
    J Org Chem; 2013 Jan; 78(2):427-37. PubMed ID: 23167735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the ambiphilic nature of σ-arylpalladium intermediates in intramolecular cyclization reactions.
    Solé D; Fernández I
    Acc Chem Res; 2014 Jan; 47(1):168-79. PubMed ID: 23957464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfur(iv) reagents for the SuFEx-based synthesis of substituted sulfamate esters.
    Downey KT; Mo JY; Lai J; Thomson BJ; Sammis GM
    Chem Sci; 2023 Feb; 14(7):1775-1780. PubMed ID: 36819869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semibullvalene and diazasemibullvalene: recent advances in the synthesis, reaction chemistry, and synthetic applications.
    Zhang S; Zhang WX; Xi Z
    Acc Chem Res; 2015 Jul; 48(7):1823-31. PubMed ID: 26061608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and Reactivity of α-Haloglycine Esters: Hyperconjugation in Action.
    Samanta SS; Roche SP
    European J Org Chem; 2019 Oct; 2019(39):6597-6605. PubMed ID: 32351314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies toward the Difunctionalizations of Enamide Derivatives for Synthesizing α,β-Substituted Amines.
    Bouchet D; Varlet T; Masson G
    Acc Chem Res; 2022 Nov; 55(22):3265-3283. PubMed ID: 36318762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinduced carbamoylation reactions: unlocking new reactivities towards amide synthesis.
    Matsuo BT; Oliveira PHR; Pissinati EF; Vega KB; de Jesus IS; Correia JTM; Paixao M
    Chem Commun (Camb); 2022 Jul; 58(60):8322-8339. PubMed ID: 35843219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting Heavier Organochalcogen Compounds in Donor-Acceptor Cyclopropane Chemistry.
    Augustin AU; Werz DB
    Acc Chem Res; 2021 Mar; 54(6):1528-1541. PubMed ID: 33661599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.