These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 37725124)
1. Augmented Reality Visualization of 3D Rotational Angiography in Congenital Heart Disease: A Comparative Study to Standard Computer Visualization. Salavitabar A; Zampi JD; Thomas C; Zanaboni D; Les A; Lowery R; Yu S; Whiteside W Pediatr Cardiol; 2024 Dec; 45(8):1759-1766. PubMed ID: 37725124 [TBL] [Abstract][Full Text] [Related]
2. Three-Dimensional Rotational Angiography during Catheterization of Congenital Heart Disease - A ten Years' experience at a single center. Söder S; Wällisch W; Dittrich S; Cesnjevar R; Pfammatter JP; Glöckler M Sci Rep; 2020 Apr; 10(1):6973. PubMed ID: 32332807 [TBL] [Abstract][Full Text] [Related]
3. Feasibility of intraprocedural augmented reality visualisation of 3D rotational angiography in congenital cardiac catheterisation. Salavitabar A; Whiteside W; Zampi JD Cardiol Young; 2023 Mar; 33(3):476-478. PubMed ID: 35815564 [TBL] [Abstract][Full Text] [Related]
4. Use of 3-D digital subtraction rotational angiography during cardiac catheterization of infants and adults with congenital heart diseases. Surendran S; Waller BR; Elijovich L; Agrawal V; Kuhls-Gilcrist A; Johnson J; Fagan T; Sathanandam SK Catheter Cardiovasc Interv; 2017 Oct; 90(4):618-625. PubMed ID: 28707365 [TBL] [Abstract][Full Text] [Related]
5. Optimizing 3D Rotational Angiography for Congenital Cardiac Catheterization. Salavitabar A; Boe BA; Berman DP; Harrison A; Swinning J; Baptista K; Eisner M; Bai S; Armstrong AK Pediatr Cardiol; 2023 Jan; 44(1):132-140. PubMed ID: 36029321 [TBL] [Abstract][Full Text] [Related]
6. Radiation Protocol for Three-Dimensional Rotational Angiography to Limit Procedural Radiation Exposure in the Pediatric Cardiac Catheterization Lab. Haddad L; Waller BR; Johnson J; Choudhri A; McGhee V; Zurakowski D; Kuhls-Gilcrist A; Sathanandam S Congenit Heart Dis; 2016 Dec; 11(6):637-646. PubMed ID: 27079433 [TBL] [Abstract][Full Text] [Related]
7. The use of three-dimensional rotational angiography to assess the pulmonary circulation following cavo-pulmonary connection in patients with single ventricle. Berman DP; Khan DM; Gutierrez Y; Zahn EM Catheter Cardiovasc Interv; 2012 Nov; 80(6):922-30. PubMed ID: 22419358 [TBL] [Abstract][Full Text] [Related]
8. Three-Dimensional Rotational Angiography in the Pediatric Cath Lab: Optimizing Aortic Interventions. Stenger A; Dittrich S; Glöckler M Pediatr Cardiol; 2016 Mar; 37(3):528-36. PubMed ID: 26667957 [TBL] [Abstract][Full Text] [Related]
9. Three-Dimensional Rotational Angiography in Pediatric Patients with Congenital Heart Disease: A Literature Review. van der Stelt F; Siegerink SN; Krings GJ; Molenschot MMC; Breur JMPJ Pediatr Cardiol; 2019 Feb; 40(2):257-264. PubMed ID: 30680421 [TBL] [Abstract][Full Text] [Related]
10. Multimodality 3D-roadmap for cardiovascular interventions in congenital heart disease--a single-center, retrospective analysis of 78 cases. Glöckler M; Halbfaβ J; Koch A; Achenbach S; Dittrich S Catheter Cardiovasc Interv; 2013 Sep; 82(3):436-42. PubMed ID: 22936634 [TBL] [Abstract][Full Text] [Related]
11. Diagnostic Utility of Three-Dimensional Rotational Angiography in Congenital Cardiac Catheterization. Aldoss O; Fonseca BM; Truong UT; Bracken J; Darst JR; Guo R; Jones TL; Fagan TE Pediatr Cardiol; 2016 Oct; 37(7):1211-21. PubMed ID: 27278632 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional rotational angiography in congenital heart disease: Present status and evolving future. Kang SL; Armstrong A; Krings G; Benson L Congenit Heart Dis; 2019 Nov; 14(6):1046-1057. PubMed ID: 31483574 [TBL] [Abstract][Full Text] [Related]
13. Feasibility and Validity of Printing 3D Heart Models from Rotational Angiography. Parimi M; Buelter J; Thanugundla V; Condoor S; Parkar N; Danon S; King W Pediatr Cardiol; 2018 Apr; 39(4):653-658. PubMed ID: 29305642 [TBL] [Abstract][Full Text] [Related]
14. Clinical Applications of Mixed Reality and 3D Printing in Congenital Heart Disease. Lau I; Gupta A; Ihdayhid A; Sun Z Biomolecules; 2022 Oct; 12(11):. PubMed ID: 36358899 [TBL] [Abstract][Full Text] [Related]
15. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing. Goo HW; Park SJ; Yoo SJ Korean J Radiol; 2020 Feb; 21(2):133-145. PubMed ID: 31997589 [TBL] [Abstract][Full Text] [Related]
16. Use of angiographic CT imaging in the cardiac catheterization laboratory for congenital heart disease. Glatz AC; Zhu X; Gillespie MJ; Hanna BD; Rome JJ JACC Cardiovasc Imaging; 2010 Nov; 3(11):1149-57. PubMed ID: 21071003 [TBL] [Abstract][Full Text] [Related]
17. Mobile, real-time, and point-of-care augmented reality is robust, accurate, and feasible: a prospective pilot study. Kenngott HG; Preukschas AA; Wagner M; Nickel F; Müller M; Bellemann N; Stock C; Fangerau M; Radeleff B; Kauczor HU; Meinzer HP; Maier-Hein L; Müller-Stich BP Surg Endosc; 2018 Jun; 32(6):2958-2967. PubMed ID: 29602988 [TBL] [Abstract][Full Text] [Related]
19. Use of rotational angiography in assessing relationship of the airway to vasculature during cardiac catheterization. Truong UT; Fagan TE; Deterding R; Ing RJ; Fonseca BM Catheter Cardiovasc Interv; 2015 Nov; 86(6):1068-77. PubMed ID: 26279410 [TBL] [Abstract][Full Text] [Related]
20. Giving up knowledge is almost never a good idea: an interview with Dr Evan Zahn. Góreczny S; Zahn EM Cardiol Young; 2019 Dec; 29(12):1419-1425. PubMed ID: 31662138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]