These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37725708)

  • 1. Winning the Lottery With Neural Connectivity Constraints: Faster Learning Across Cognitive Tasks With Spatially Constrained Sparse RNNs.
    Khona M; Chandra S; Ma JJ; Fiete IR
    Neural Comput; 2023 Oct; 35(11):1850-1869. PubMed ID: 37725708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks.
    Ehrlich DB; Stone JT; Brandfonbrener D; Atanasov A; Murray JD
    eNeuro; 2021; 8(1):. PubMed ID: 33328247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training biologically plausible recurrent neural networks on cognitive tasks with long-term dependencies.
    Soo WWM; Goudar V; Wang XJ
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring weight initialization, diversity of solutions, and degradation in recurrent neural networks trained for temporal and decision-making tasks.
    Jarne C; Laje R
    J Comput Neurosci; 2023 Nov; 51(4):407-431. PubMed ID: 37561278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structured flexibility in recurrent neural networks via neuromodulation.
    Costacurta JC; Bhandarkar S; Zoltowski DM; Linderman SW
    bioRxiv; 2024 Jul; ():. PubMed ID: 39091788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two Recurrent Neural Networks With Reduced Model Complexity for Constrained l₁-Norm Optimization.
    Xia Y; Wang J; Lu Z; Huang L
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):6173-6185. PubMed ID: 34986103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.
    Song HF; Yang GR; Wang XJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004792. PubMed ID: 26928718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Considerations in using recurrent neural networks to probe neural dynamics.
    Kao JC
    J Neurophysiol; 2019 Dec; 122(6):2504-2521. PubMed ID: 31619125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-instantiated recurrent neural networks: Integrating neurobiology-based network topology in artificial networks.
    Goulas A; Damicelli F; Hilgetag CC
    Neural Netw; 2021 Oct; 142():608-618. PubMed ID: 34391175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural population dynamics of computing with synaptic modulations.
    Aitken K; Mihalas S
    Elife; 2023 Feb; 12():. PubMed ID: 36820526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balancing Memorization and Generalization in RNNs for High Performance Brain-Machine Interfaces.
    Costello JT; Temmar H; Cubillos LH; Mender MJ; Wallace DM; Willsey MS; Patil PG; Chestek CA
    bioRxiv; 2023 May; ():. PubMed ID: 37292755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNNCon: Contribution Coverage Testing for Stacked Recurrent Neural Networks.
    Du X; Zeng H; Chen S; Lei Z
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences.
    He W; Wu Y; Deng L; Li G; Wang H; Tian Y; Ding W; Wang W; Xie Y
    Neural Netw; 2020 Dec; 132():108-120. PubMed ID: 32866745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gated Orthogonal Recurrent Units: On Learning to Forget.
    Jing L; Gulcehre C; Peurifoy J; Shen Y; Tegmark M; Soljacic M; Bengio Y
    Neural Comput; 2019 Apr; 31(4):765-783. PubMed ID: 30764742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local online learning in recurrent networks with random feedback.
    Murray JM
    Elife; 2019 May; 8():. PubMed ID: 31124785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of Recurrent Neural Networks in Environmental Factor Forecasting: A Review.
    Chen Y; Cheng Q; Cheng Y; Yang H; Yu H
    Neural Comput; 2018 Nov; 30(11):2855-2881. PubMed ID: 30216144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust and brain-like working memory through short-term synaptic plasticity.
    Kozachkov L; Tauber J; Lundqvist M; Brincat SL; Slotine JJ; Miller EK
    PLoS Comput Biol; 2022 Dec; 18(12):e1010776. PubMed ID: 36574424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training recurrent networks by Evolino.
    Schmidhuber J; Wierstra D; Gagliolo M; Gomez F
    Neural Comput; 2007 Mar; 19(3):757-79. PubMed ID: 17298232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recurrent neural networks for dynamical systems: Applications to ordinary differential equations, collective motion, and hydrological modeling.
    Gajamannage K; Jayathilake DI; Park Y; Bollt EM
    Chaos; 2023 Jan; 33(1):013109. PubMed ID: 36725658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universality and individuality in neural dynamics across large populations of recurrent networks.
    Maheswaranathan N; Williams AH; Golub MD; Ganguli S; Sussillo D
    Adv Neural Inf Process Syst; 2019 Dec; 2019():15629-15641. PubMed ID: 32782422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.