These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 37725745)
1. A Hybrid Data Preprocessing-Based Hierarchical Attention BiLSTM Network for Remaining Useful Life Prediction of Spacecraft Lithium-Ion Batteries. Luo T; Liu M; Shi P; Duan G; Cao X IEEE Trans Neural Netw Learn Syst; 2023 Sep; PP():. PubMed ID: 37725745 [TBL] [Abstract][Full Text] [Related]
2. Early prediction of remaining useful life for lithium-ion batteries based on CEEMDAN-transformer-DNN hybrid model. Cai Y; Li W; Zahid T; Zheng C; Zhang Q; Xu K Heliyon; 2023 Jul; 9(7):e17754. PubMed ID: 37456048 [TBL] [Abstract][Full Text] [Related]
3. XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries. Jafari S; Byun YC Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502223 [TBL] [Abstract][Full Text] [Related]
4. A Double-Channel Hybrid Deep Neural Network Based on CNN and BiLSTM for Remaining Useful Life Prediction. Zhao C; Huang X; Li Y; Yousaf Iqbal M Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322457 [TBL] [Abstract][Full Text] [Related]
5. Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks. Suh S; Mittal DA; Bello H; Zhou B; Jha MS; Lukowicz P Heliyon; 2024 Aug; 10(16):e36236. PubMed ID: 39262949 [TBL] [Abstract][Full Text] [Related]
6. A Hybrid Data-Driven Approach for Multistep Ahead Prediction of State of Health and Remaining Useful Life of Lithium-Ion Batteries. Ali MU; Zafar A; Masood H; Kallu KD; Khan MA; Tariq U; Kim YJ; Chang B Comput Intell Neurosci; 2022; 2022():1575303. PubMed ID: 35733564 [TBL] [Abstract][Full Text] [Related]
7. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM. Zhang C; He Y; Yuan L; Xiang S; Wang J Comput Intell Neurosci; 2015; 2015():918305. PubMed ID: 26413090 [TBL] [Abstract][Full Text] [Related]
8. Remaining Useful Life Prediction of Lithium-Ion Batteries Using Neural Networks with Adaptive Bayesian Learning. Pugalenthi K; Park H; Hussain S; Raghavan N Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632212 [TBL] [Abstract][Full Text] [Related]
9. A remaining useful life estimation method based on long short-term memory and federated learning for electric vehicles in smart cities. Chen X; Chen Z; Zhang M; Wang Z; Liu M; Fu M; Wang P PeerJ Comput Sci; 2023; 9():e1652. PubMed ID: 38077580 [TBL] [Abstract][Full Text] [Related]
10. A Novel Remaining Useful Life Prediction Method for Capacity Diving Lithium-Ion Batteries. Gao K; Xu J; Li Z; Cai Z; Jiang D; Zeng A ACS Omega; 2022 Aug; 7(30):26701-26714. PubMed ID: 35936419 [TBL] [Abstract][Full Text] [Related]
11. An interpretable online prediction method for remaining useful life of lithium-ion batteries. Li Z; Shen S; Ye Y; Cai Z; Zhen A Sci Rep; 2024 May; 14(1):12541. PubMed ID: 38821997 [TBL] [Abstract][Full Text] [Related]
12. Remaining useful life prediction of high-capacity lithium-ion batteries based on incremental capacity analysis and Gaussian kernel function optimization. Tang Y; Zhong S; Wang P; Zhang Y; Wang Y Sci Rep; 2024 Oct; 14(1):23524. PubMed ID: 39384566 [TBL] [Abstract][Full Text] [Related]
13. Remaining useful life and state of health prediction for lithium batteries based on differential thermal voltammetry and a deep learning model. Zhang L; Wang W; Yu H; Zhang Z; Yang X; Liang F; Li S; Yang S; Liu X iScience; 2022 Dec; 25(12):105638. PubMed ID: 36536681 [TBL] [Abstract][Full Text] [Related]
14. Machinery Prognostics and High-Dimensional Data Feature Extraction Based on a Transformer Self-Attention Transfer Network. Sun S; Peng T; Huang H Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005579 [TBL] [Abstract][Full Text] [Related]
15. Prediction of sea ice area based on the CEEMDAN-SO-BiLSTM model. Guo Q; Zhang H; Zhang Y; Jiang X PeerJ; 2023; 11():e15748. PubMed ID: 37483978 [TBL] [Abstract][Full Text] [Related]
16. A Digital Twin-Driven Life Prediction Method of Lithium-Ion Batteries Based on Adaptive Model Evolution. Yang D; Cui Y; Xia Q; Jiang F; Ren Y; Sun B; Feng Q; Wang Z; Yang C Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591665 [TBL] [Abstract][Full Text] [Related]
17. Joint Learning of Failure Mode Recognition and Prognostics for Degradation Processes. Wang D; Xian X; Song C IEEE Trans Autom Sci Eng; 2024 Apr; 21(2):1421-1433. PubMed ID: 38595999 [TBL] [Abstract][Full Text] [Related]
18. Research on the Remaining Useful Life Prediction Method of Energy Storage Battery Based on Multimodel Integration. Shao L; Zhao L; Liu H; Zhang D; Li J; Li C ACS Omega; 2024 Oct; 9(39):40496-40510. PubMed ID: 39372030 [TBL] [Abstract][Full Text] [Related]
19. A conditional random field based feature learning framework for battery capacity prediction. Wang HK; Zhang Y; Huang M Sci Rep; 2022 Aug; 12(1):13221. PubMed ID: 35918374 [TBL] [Abstract][Full Text] [Related]
20. Multi-step interval prediction of ultra-short-term wind power based on CEEMDAN-FIG and CNN-BiLSTM. Zhao Z; Nan H; Liu Z; Yu Y Environ Sci Pollut Res Int; 2022 Aug; 29(38):58097-58109. PubMed ID: 35362890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]