These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37725875)

  • 1. Wood-based capillary enhancers for accelerated moisture capture and solar-powered release.
    Deng R; Lu F; Li YT; Yang HC; Huang J
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):454-462. PubMed ID: 37725875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification.
    Zhang Y; Wu L; Wang X; Yu J; Ding B
    Nat Commun; 2020 Jul; 11(1):3302. PubMed ID: 32620818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tillandsia-Inspired Hygroscopic Photothermal Organogels for Efficient Atmospheric Water Harvesting.
    Ni F; Qiu N; Xiao P; Zhang C; Jian Y; Liang Y; Xie W; Yan L; Chen T
    Angew Chem Int Ed Engl; 2020 Oct; 59(43):19237-19246. PubMed ID: 33448559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sandwich-Structured Photothermal Wood for Durable Moisture Harvesting and Pumping.
    Li YT; Chen H; Deng R; Wu MB; Yang HC; Darling SB
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33713-33721. PubMed ID: 34232009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hygroscopic and Photothermal All-Polymer Foams for Efficient Atmospheric Water Harvesting, Passive Humidity Management, and Protective Packaging.
    Lin Y; Shao K; Li S; Li N; Wang S; Wu X; Guo C; Yu L; Murto P; Xu X
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36753048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macro-porous structured aerogel with enhanced ab/desorption kinetics for sorption-based atmospheric water harvesting.
    Deng K; Zhu M; Chen J; Wang Z; Yang H; Xu H; He G; Zhan Y; Gu S; Liu X; Shang B
    J Colloid Interface Sci; 2024 Feb; 656():466-473. PubMed ID: 38007938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guar Gum-Based Macroporous Hygroscopic Polymer for Efficient Atmospheric Water Harvesting.
    Li J; Xing G; Qiao M; Liu Z; Sun H; Jiao R; Li L; Zhang J; Li A
    Langmuir; 2023 Dec; 39(49):18161-18170. PubMed ID: 38015071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-Hygroscopic Calcium Chloride/Graphene Oxide/Poly(N-isopropylacrylamide) Gels for Spontaneous Harvesting of Atmospheric Water and Solar-Driven Water Release.
    Wang X; Yang D; Zhang M; Hu Q; Gao K; Zhou J; Yu ZZ
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35849823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the covalent organic frameworks based polymer materials for solar-driven atmospheric water harvesting.
    Liu X; Ding W; Feng T; Yang C; Li J; Liu P; Lei Z
    J Colloid Interface Sci; 2024 Jun; 673():817-825. PubMed ID: 38906003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic Aerogel Composite for Atmospheric Water Harvesting.
    Fu C; Zhan D; Tian G; Yu A; Yao L; Guo Z
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):35740-35751. PubMed ID: 38918074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A humidity/thermal dual response 3D-fabric with porous poly(N-isopropyl acrylamide) hydrogel towards efficient atmospheric water harvesting.
    Zhang Z; Wang X; Li H; Liu G; Zhao K; Wang Y; Li Z; Huang J; Xu Z; Lai Y; Qian X; Zhang S
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1040-1051. PubMed ID: 37783004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Solar-Driven Hygroscopic Water Harvesting.
    Zhuang S; Qi H; Wang X; Li X; Liu K; Liu J; Zhang H
    Glob Chall; 2021 Jan; 5(1):2000085. PubMed ID: 33437528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable Hierarchical-Pored PAAS-PNIPAAm Hydrogel with Core-Shell Structure Tailored for Highly Efficient Atmospheric Water Harvesting.
    Zhang Z; Wang Y; Li Z; Fu H; Huang J; Xu Z; Lai Y; Qian X; Zhang S
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55295-55306. PubMed ID: 36454694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Super-Hygroscopic Solar-Regenerated Alginate-Based Composite for Atmospheric Water Harvesting.
    Abd Elwadood SN; Farinha ASF; Al Wahedi Y; Al Alili A; Witkamp GJ; Dumée LF; Karanikolos GN
    Small; 2024 May; ():e2400420. PubMed ID: 38751057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reviewing wood-based solar-driven interfacial evaporators for desalination.
    Dong Y; Tan Y; Wang K; Cai Y; Li J; Sonne C; Li C
    Water Res; 2022 Sep; 223():119011. PubMed ID: 36037711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When Coordination Polymers Meet Wood: From Molecular Design toward Sustainable Solar Desalination.
    Sheng K; Tian M; Zhu J; Zhang Y; Van der Bruggen B
    ACS Nano; 2023 Aug; 17(16):15482-15491. PubMed ID: 37535405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroporous, Highly Hygroscopic, and Leakage-Free Composites for Efficient Atmospheric Water Harvesting.
    Huang Z; Zhang T; Ju A; Xu Z; Zhao Y
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16893-16902. PubMed ID: 38525842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments.
    Guo Y; Guan W; Lei C; Lu H; Shi W; Yu G
    Nat Commun; 2022 May; 13(1):2761. PubMed ID: 35589809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fe-Co controlled super-hygroscopic hydrogels toward efficient atmospheric water harvesting.
    Wu H; Xiong Y; Yu D; Yang P; Shi H; Huang L; Wu Y; Xi M; Xiao P; Yang L
    Nanoscale; 2022 Dec; 14(48):18022-18032. PubMed ID: 36444669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomous Atmospheric Water Harvesting over a Wide RH Range Enabled by Super Hygroscopic Composite Aerogels.
    Zhang X; Qu H; Li X; Zhang L; Zhang Y; Yang J; Zhou M; Suresh L; Liu S; Tan SC
    Adv Mater; 2024 Jan; ():e2310219. PubMed ID: 38219071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.