These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37725883)

  • 1. Rapid quantitative analysis of Rongalite adulteration in rice flour using autoencoder and residual-based model associated with portable Raman spectroscopy.
    Li S; Li T; Cai Y; Yao Z; He M
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 304():123382. PubMed ID: 37725883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-Resolved Laser-Induced Breakdown Spectroscopy for Accurate Qualitative and Quantitative Analysis of Brown Rice Flour Adulteration.
    Ma H; Shi S; Zhang D; Deng N; Hu Z; Liu J; Guo L
    Foods; 2022 Oct; 11(21):. PubMed ID: 36360011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid visible-near infrared (Vis-NIR) spectroscopic detection and quantification of unripe banana flour adulteration with wheat flour.
    Ndlovu PF; Magwaza LS; Tesfay SZ; Mphahlele RR
    J Food Sci Technol; 2019 Dec; 56(12):5484-5491. PubMed ID: 31749496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global calibration for non-targeted fraud detection in quinoa flour using portable hyperspectral imaging and chemometrics.
    Wu Q; Mousa MAA; Al-Qurashi AD; Ibrahim OHM; Abo-Elyousr KAM; Rausch K; Abdel Aal AMK; Kamruzzaman M
    Curr Res Food Sci; 2023; 6():100483. PubMed ID: 37033735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Adulteration identification of wheat flour in chestnut flour based on differences in mycotoxin contamination by liquid chromatography-tandem mass spectrometry].
    Zhou J; Chen X; Jin M
    Se Pu; 2022 Apr; 40(4):303-312. PubMed ID: 35362678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary study on classification of rice and detection of paraffin in the adulterated samples by Raman spectroscopy combined with multivariate analysis.
    Feng X; Zhang Q; Cong P; Zhu Z
    Talanta; 2013 Oct; 115():548-55. PubMed ID: 24054631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Rapid Fluorescence Sensor for the Direct Quantification of Rongalite in Foodstuffs.
    Li H; Chen J; Huang B; Kong L; Sun F; Li L; Peng C; Cai H; Hou R
    Foods; 2022 Sep; 11(17):. PubMed ID: 36076836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid detection of sesame oil multiple adulteration using a portable Raman spectrometer.
    Li X; Wang D; Ma F; Yu L; Mao J; Zhang W; Jiang J; Zhang L; Li P
    Food Chem; 2023 Mar; 405(Pt B):134884. PubMed ID: 36435121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid qualitative detection of titanium dioxide adulteration in persimmon icing using portable Raman spectrometer and Machine learning.
    Li J; Zhang L; Zhu F; Song Y; Yu K; Zhao Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 290():122221. PubMed ID: 36549243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Talc Content in Wheat Flour Based on a Near-Infrared Spectroscopy Technique.
    Liu YI; Sun L; Ran Z; Pan X; Zhou S; Liu S
    J Food Prot; 2019 Oct; 82(10):1655-1662. PubMed ID: 31526188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Fourier Transform Mid-Infrared Spectroscopy with Chemometric Methods to Detect Adulterations in Milk Powder.
    Feng L; Zhu S; Chen S; Bao Y; He Y
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31277225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of adulteration in Eragrostis tef (Zucc.) Trotter flour using EDXRF and ComDim-MLR data fusion.
    Casarin P; Santos LDD; Viell FLG; Melquiades FL; Bona E
    Anal Chim Acta; 2023 Oct; 1276():341639. PubMed ID: 37573100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Identification of Rainbow Trout Adulteration in Atlantic Salmon by Raman Spectroscopy Combined with Machine Learning.
    Chen Z; Wu T; Xiang C; Xu X; Tian X
    Molecules; 2019 Aug; 24(15):. PubMed ID: 31390746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid detection of adulteration of minced beef using Vis/NIR reflectance spectroscopy with multivariate methods.
    Weng S; Guo B; Tang P; Yin X; Pan F; Zhao J; Huang L; Zhang D
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118005. PubMed ID: 31951866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of common buckwheat (
    Chai Y; Yu Y; Zhu H; Li Z; Dong H; Yang H
    Curr Res Food Sci; 2023; 7():100573. PubMed ID: 37650007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy combined with machine learning algorithms to detect adulterated Suichang native honey.
    Hu S; Li H; Chen C; Chen C; Zhao D; Dong B; Lv X; Zhang K; Xie Y
    Sci Rep; 2022 Mar; 12(1):3456. PubMed ID: 35236873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Raman spectroscopy combined with pattern recognition methods for rapid identification of crude soybean oil adulteration].
    Li BN; Wu YW; Wang Y; Zu WC; Chen SC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2696-700. PubMed ID: 25739210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and Quantitative Analysis of Ediphenphos Residue in Rice Using Surface-Enhanced Raman Spectroscopy.
    Weng S; Wang F; Dong R; Qiu M; Zhao J; Huang L; Zhang D
    J Food Sci; 2018 Apr; 83(4):1179-1185. PubMed ID: 29538797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing mineral profiles for rice flour fraud detection by principal component analysis based data fusion.
    Pérez-Rodríguez M; Dirchwolf PM; Rodríguez-Negrín Z; Pellerano RG
    Food Chem; 2021 Mar; 339():128125. PubMed ID: 33152892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of adulterated sugar with plastic packaging based on spatially offset Raman imaging.
    Liu Z; Huang M; Zhu Q; Qin J; Kim MS
    J Sci Food Agric; 2021 Dec; 101(15):6281-6288. PubMed ID: 33963763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.