These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37725886)

  • 21. Concurrent validity of lower extremity kinematics and jump characteristics captured in pre-school children by a markerless 3D motion capture system.
    Harsted S; Holsgaard-Larsen A; Hestbæk L; Boyle E; Lauridsen HH
    Chiropr Man Therap; 2019; 27():39. PubMed ID: 31417672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accuracy of a 3D temporal scanning system for gait analysis: Comparative with a marker-based photogrammetry system.
    Ruescas Nicolau AV; De Rosario H; Basso Della-Vedova F; Parrilla Bernabé E; Juan MC; López-Pascual J
    Gait Posture; 2022 Sep; 97():28-34. PubMed ID: 35868094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane.
    Sandau M; Koblauch H; Moeslund TB; Aanæs H; Alkjær T; Simonsen EB
    Med Eng Phys; 2014 Sep; 36(9):1168-75. PubMed ID: 25085672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validation of a portable marker-based motion analysis system.
    Wang S; Zeng X; Huangfu L; Xie Z; Ma L; Huang W; Zhang Y
    J Orthop Surg Res; 2021 Jul; 16(1):425. PubMed ID: 34217352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system.
    Schmitz A; Ye M; Shapiro R; Yang R; Noehren B
    J Biomech; 2014 Jan; 47(2):587-91. PubMed ID: 24315287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accuracy of Video-Based Gait Analysis Using Pose Estimation During Treadmill Walking Versus Overground Walking in Persons After Stroke.
    John K; Stenum J; Chiang CC; French MA; Kim C; Manor J; Statton MA; Cherry-Allen KM; Roemmich RT
    Phys Ther; 2024 Feb; 104(2):. PubMed ID: 37682075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Absolute Reliability of Gait Parameters Acquired With Markerless Motion Capture in Living Domains.
    Riazati S; McGuirk TE; Perry ES; Sihanath WB; Patten C
    Front Hum Neurosci; 2022; 16():867474. PubMed ID: 35782037
    [No Abstract]   [Full Text] [Related]  

  • 28. Reliability and validity of knee angles and moments in patients with osteoarthritis using a treadmill-based gait analysis system.
    Pinto RF; Birmingham TB; Leitch KM; Atkinson HF; Jones IC; Giffin JR
    Gait Posture; 2020 Jul; 80():155-161. PubMed ID: 32512344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The development and evaluation of a fully automated markerless motion capture workflow.
    Needham L; Evans M; Wade L; Cosker DP; McGuigan MP; Bilzon JL; Colyer SL
    J Biomech; 2022 Nov; 144():111338. PubMed ID: 36252308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accuracy of image data stream of a markerless motion capture system in determining the local dynamic stability and joint kinematics of human gait.
    Chakraborty S; Nandy A; Yamaguchi T; Bonnet V; Venture G
    J Biomech; 2020 May; 104():109718. PubMed ID: 32151378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Agreement Between Sagittal Foot and Tibia Angles During Running Derived From an Open-Source Markerless Motion Capture Platform and Manual Digitization.
    Johnson CD; Outerleys J; Davis IS
    J Appl Biomech; 2022 Apr; 38(2):111-116. PubMed ID: 35272264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Healthcare applications of single camera markerless motion capture: a scoping review.
    Scott B; Seyres M; Philp F; Chadwick EK; Blana D
    PeerJ; 2022; 10():e13517. PubMed ID: 35642200
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of lower limb and trunk kinematics between markerless and marker-based motion capture systems.
    Perrott MA; Pizzari T; Cook J; McClelland JA
    Gait Posture; 2017 Feb; 52():57-61. PubMed ID: 27871019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements.
    Song K; Hullfish TJ; Silva RS; Silbernagel KG; Baxter JR
    bioRxiv; 2023 Feb; ():. PubMed ID: 36865211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Artificial Intelligence-Assisted motion capture for medical applications: a comparative study between markerless and passive marker motion capture.
    Takeda I; Yamada A; Onodera H
    Comput Methods Biomech Biomed Engin; 2021 Jun; 24(8):864-873. PubMed ID: 33290107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validity of an artificial intelligence, human pose estimation model for measuring single-leg squat kinematics.
    Haberkamp LD; Garcia MC; Bazett-Jones DM
    J Biomech; 2022 Nov; 144():111333. PubMed ID: 36198251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validity of time series kinematical data as measured by a markerless motion capture system on a flatland for gait assessment.
    Tanaka R; Takimoto H; Yamasaki T; Higashi A
    J Biomech; 2018 Apr; 71():281-285. PubMed ID: 29475751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics.
    Washabaugh EP; Shanmugam TA; Ranganathan R; Krishnan C
    Gait Posture; 2022 Sep; 97():188-195. PubMed ID: 35988434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Markerless vs. Marker-Based Gait Analysis: A Proof of Concept Study.
    Moro M; Marchesi G; Hesse F; Odone F; Casadio M
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 2: Accuracy.
    Pagnon D; Domalain M; Reveret L
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.