BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37726064)

  • 1. The Warburg effect on radioresistance: Survival beyond growth.
    Kang H; Kim B; Park J; Youn H; Youn B
    Biochim Biophys Acta Rev Cancer; 2023 Nov; 1878(6):188988. PubMed ID: 37726064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming the Warburg Effect: Is it the key to survival in sepsis?
    Bar-Or D; Carrick M; Tanner A; Lieser MJ; Rael LT; Brody E
    J Crit Care; 2018 Feb; 43():197-201. PubMed ID: 28915394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feedback loop between hypoxia and energy metabolic reprogramming aggravates the radioresistance of cancer cells.
    Shi Z; Hu C; Zheng X; Sun C; Li Q
    Exp Hematol Oncol; 2024 May; 13(1):55. PubMed ID: 38778409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer-like metabolism of the mammalian retina.
    Ng SK; Wood JP; Chidlow G; Han G; Kittipassorn T; Peet DJ; Casson RJ
    Clin Exp Ophthalmol; 2015; 43(4):367-76. PubMed ID: 25330055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2-Methoxyestradiol, an endogenous estrogen metabolite, sensitizes radioresistant MCF-7/FIR breast cancer cells through multiple mechanisms.
    Salama S; Diaz-Arrastia C; Patel D; Botting S; Hatch S
    Int J Radiat Oncol Biol Phys; 2011 May; 80(1):231-9. PubMed ID: 21392897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic shift towards oxidative phosphorylation reduces cell-density-induced cancer-stem-cell-like characteristics in prostate cancer in vitro.
    Lai HW; Kasai M; Yamamoto S; Fukuhara H; Karashima T; Kurabayashi A; Furihata M; Hanazaki K; Inoue K; Ogura SI
    Biol Open; 2023 Apr; 12(4):. PubMed ID: 36919762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Warburg effect to Reverse Warburg effect; the new horizons of anti-cancer therapy.
    Benny S; Mishra R; Manojkumar MK; Aneesh TP
    Med Hypotheses; 2020 Nov; 144():110216. PubMed ID: 33254523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Warburg effect in Gynecologic cancers.
    Kobayashi Y; Banno K; Kunitomi H; Takahashi T; Takeda T; Nakamura K; Tsuji K; Tominaga E; Aoki D
    J Obstet Gynaecol Res; 2019 Mar; 45(3):542-548. PubMed ID: 30511455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect.
    Chen XS; Li LY; Guan YD; Yang JM; Cheng Y
    Acta Pharmacol Sin; 2016 Aug; 37(8):1013-9. PubMed ID: 27374491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect.
    Lu CL; Qin L; Liu HC; Candas D; Fan M; Li JJ
    PLoS One; 2015; 10(3):e0121046. PubMed ID: 25807077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytometabolites Targeting the Warburg Effect in Cancer Cells: A Mechanistic Review.
    Hasanpourghadi M; Looi CY; Pandurangan AK; Sethi G; Wong WF; Mustafa MR
    Curr Drug Targets; 2017; 18(9):1086-1094. PubMed ID: 27033190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Warburg effect: evolving interpretations of an established concept.
    Chen X; Qian Y; Wu S
    Free Radic Biol Med; 2015 Feb; 79():253-63. PubMed ID: 25277420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting Glucose Metabolism of Cancer Cells with Dichloroacetate to Radiosensitize High-Grade Gliomas.
    Cook KM; Shen H; McKelvey KJ; Gee HE; Hau E
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
    Lu J; Tan M; Cai Q
    Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the "Warburg Effect", i.e., elevated glycolysis in the presence of oxygen.
    Pedersen PL
    J Bioenerg Biomembr; 2007 Jun; 39(3):211-22. PubMed ID: 17879147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warburg and pasteur phenotypes modulate cancer behavior and therapy.
    Karaca C; Tokatli A; Tokatli A; Karadag A; Calibasi-Kocal G
    Anticancer Drugs; 2022 Jan; 33(1):e69-e75. PubMed ID: 34538862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Warburg effect: insights from the past decade.
    Upadhyay M; Samal J; Kandpal M; Singh OV; Vivekanandan P
    Pharmacol Ther; 2013 Mar; 137(3):318-30. PubMed ID: 23159371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The emerging roles of the ubiquitination/deubiquitination system in tumor radioresistance regarding DNA damage responses, cell cycle regulation, hypoxic responses, and antioxidant properties: Insight into the development of novel radiosensitizing strategies.
    Goto Y; Koyasu S; Kobayashi M; Harada H
    Mutat Res; 2017 Oct; 803-805():76-81. PubMed ID: 28778421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-dependent protein kinase catalytic subunit inhibitor reverses acquired radioresistance in lung adenocarcinoma by suppressing DNA repair.
    Li Y; Li H; Peng W; He XY; Huang M; Qiu D; Xue YB; Lu L
    Mol Med Rep; 2015 Jul; 12(1):1328-34. PubMed ID: 25815686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.