These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37726212)

  • 21. Centrifugally Spun Binder-Free N, S-Doped Ge@PCNF Anodes for Li-Ion and Na-Ion Batteries.
    Yanilmaz M; Cihanbeyoğlu G; Kim J
    ACS Omega; 2023 May; 8(19):16987-16995. PubMed ID: 37214696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Si and Ge-Based Anode Materials for Li-, Na-, and K-Ion Batteries: A Perspective from Structure to Electrochemical Mechanism.
    Loaiza LC; Monconduit L; Seznec V
    Small; 2020 Feb; 16(5):e1905260. PubMed ID: 31922657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multidimensional Germanium-Based Materials as Anodes for Lithium-Ion Batteries.
    Qin J; Cao M
    Chem Asian J; 2016 Apr; 11(8):1169-81. PubMed ID: 26990878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tracking areal lithium densities from neutron activation - quantitative Li determination in self-organized TiO
    Portenkirchner E; Neri G; Lichtinger J; Brumbarov J; Rüdiger C; Gernhäuser R; Kunze-Liebhäuser J
    Phys Chem Chem Phys; 2017 Mar; 19(12):8602-8611. PubMed ID: 28290567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterogeneous TiO
    Kurttepeli M; Deng S; Mattelaer F; Cott DJ; Vereecken P; Dendooven J; Detavernier C; Bals S
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8055-8064. PubMed ID: 28199079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical oxidation of carbamazepine in water using enhanced blue TiO
    Huang W; Huang Y; Tang B; Fu Y; Guo C; Zhang J
    Chemosphere; 2023 May; 322():138193. PubMed ID: 36812998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries.
    Chen R; Zhao T; Wu W; Wu F; Li L; Qian J; Xu R; Wu H; Albishri HM; Al-Bogami AS; El-Hady DA; Lu J; Amine K
    Nano Lett; 2014 Oct; 14(10):5899-904. PubMed ID: 25163033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Binder-free germanium nanoparticle decorated multi-wall carbon nanotube anodes prepared
    Pham XM; Abdul Ahad S; Patil NN; Geaney H; Singh S; Ryan KM
    Nanoscale Horiz; 2024 Mar; 9(4):637-645. PubMed ID: 38391139
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TiO
    Li Y; Li S; Cui J; Yan J; Tan HH; Liu J; Wu Y
    Nanoscale Adv; 2022 Oct; 4(21):4639-4647. PubMed ID: 36341294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving the performance of titania nanotube battery materials by surface modification with lithium phosphate.
    López MC; Ortiz GF; González JR; Alcántara R; Tirado JL
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5669-78. PubMed ID: 24720517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays.
    Fang HT; Liu M; Wang DW; Sun T; Guan DS; Li F; Zhou J; Sham TK; Cheng HM
    Nanotechnology; 2009 Jun; 20(22):225701. PubMed ID: 19436089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superb Li-Ion Storage of Sn-Based Anode Assisted by Conductive Hybrid Buffering Matrix.
    Shin J; Park SH; Hur J
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Binder-Free Charantia-Like Metal-Oxide Core/Shell Nanotube Arrays for High-Performance Lithium-Ion Anodes.
    Xu P; Zhang Z; Zhang H; Shen A; Zhao Y; Zhou Y; Weng Y
    Front Chem; 2020; 8():159. PubMed ID: 32211381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Boosting Lithium-Ion Transport Kinetics by Increasing the Local Lithium-Ion Concentration Gradient in Composite Anodes of Lithium-Ion Batteries.
    Wu W; Sun Z; He Q; Shi X; Ge X; Cheng J; Wang J; Zhang Z
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14752-14758. PubMed ID: 33729763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Germanium-based high-performance dual-ion batteries.
    Zhou J; Zhou Y; Zhang X; Cheng L; Qian M; Wei W; Wang H
    Nanoscale; 2020 Jan; 12(1):79-84. PubMed ID: 31825064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries.
    Liu J; Song K; Zhu C; Chen CC; van Aken PA; Maier J; Yu Y
    ACS Nano; 2014 Jul; 8(7):7051-9. PubMed ID: 24940842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. First-Principles Dynamics Investigation of Germanium as an Anode Material in Multivalent-Ion Batteries.
    Kim C; Hwang U; Lee S; Han YK
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage.
    Xu X; Fan Z; Ding S; Yu D; Du Y
    Nanoscale; 2014 May; 6(10):5245-50. PubMed ID: 24687092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced Self-Assembly of Crystalline, Large-Area, and Periodicity-Tunable TiO
    Liang X; Zhang H; Li HW; Shu L; Cheung H; Li D; Yip S; Yang QD; Wong CY; Tsang SW; Ho JC
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6265-6272. PubMed ID: 28146628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.