These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37726227)

  • 1. Ratio of stemness to interferon signalling as a biomarker and therapeutic target of myeloproliferative neoplasm progression to acute myeloid leukaemia.
    de Castro FA; Mehdipour P; Chakravarthy A; Ettayebi I; Loo Yau H; Medina TS; Marhon SA; de Almeida FC; Bianco TM; Arruda AGF; Devlin R; de Figueiredo-Pontes LL; Chahud F; da Costa Cacemiro M; Minden MD; Gupta V; De Carvalho DD
    Br J Haematol; 2024 Jan; 204(1):206-220. PubMed ID: 37726227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proof of concept of triple COMBI therapy to prohibit MPN progression to AML.
    Hasselbalch HC; Skov V; Kjaer L; Larsen MK
    Br J Haematol; 2024 Jan; 204(1):16-18. PubMed ID: 37957927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. JAK2 V617F-positive acute myeloid leukaemia (AML): a comparison between de novo AML and secondary AML transformed from an underlying myeloproliferative neoplasm. A study from the Bone Marrow Pathology Group.
    Aynardi J; Manur R; Hess PR; Chekol S; Morrissette JJD; Babushok D; Hexner E; Rogers HJ; Hsi ED; Margolskee E; Orazi A; Hasserjian R; Bagg A
    Br J Haematol; 2018 Jul; 182(1):78-85. PubMed ID: 29767839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated Phase of Myeloproliferative Neoplasms.
    Shahin OA; Chifotides HT; Bose P; Masarova L; Verstovsek S
    Acta Haematol; 2021; 144(5):484-499. PubMed ID: 33882481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of gene mutations on treatment response and prognosis of acute myeloid leukemia secondary to myeloproliferative neoplasms.
    Venton G; Courtier F; Charbonnier A; D'incan E; Saillard C; Mohty B; Mozziconacci MJ; Birnbaum D; Murati A; Vey N; Rey J
    Am J Hematol; 2018 Mar; 93(3):330-338. PubMed ID: 29148089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior efficacy of co-targeting GFI1/KDM1A and BRD4 against AML and post-MPN secondary AML cells.
    Fiskus W; Mill CP; Nabet B; Perera D; Birdwell C; Manshouri T; Lara B; Kadia TM; DiNardo C; Takahashi K; Daver N; Bose P; Masarova L; Pemmaraju N; Kornblau S; Borthakur G; Montalban-Bravo G; Manero GG; Sharma S; Stubbs M; Su X; Green MR; Coarfa C; Verstovsek S; Khoury JD; Vakoc CR; Bhalla KN
    Blood Cancer J; 2021 May; 11(5):98. PubMed ID: 34016956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting nuclear β-catenin as therapy for post-myeloproliferative neoplasm secondary AML.
    Saenz DT; Fiskus W; Manshouri T; Mill CP; Qian Y; Raina K; Rajapakshe K; Coarfa C; Soldi R; Bose P; Borthakur G; Kadia TM; Khoury JD; Masarova L; Nowak AJ; Sun B; Saenz DN; Kornblau SM; Horrigan S; Sharma S; Qiu P; Crews CM; Verstovsek S; Bhalla KN
    Leukemia; 2019 Jun; 33(6):1373-1386. PubMed ID: 30575820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HCK maintains the self-renewal of leukaemia stem cells via CDK6 in AML.
    Li Z; Wang F; Tian X; Long J; Ling B; Zhang W; Xu J; Liang A
    J Exp Clin Cancer Res; 2021 Jun; 40(1):210. PubMed ID: 34167558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms.
    Rampal R; Ahn J; Abdel-Wahab O; Nahas M; Wang K; Lipson D; Otto GA; Yelensky R; Hricik T; McKenney AS; Chiosis G; Chung YR; Pandey S; van den Brink MR; Armstrong SA; Dogan A; Intlekofer A; Manshouri T; Park CY; Verstovsek S; Rapaport F; Stephens PJ; Miller VA; Levine RL
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):E5401-10. PubMed ID: 25516983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BET protein bromodomain inhibitor-based combinations are highly active against post-myeloproliferative neoplasm secondary AML cells.
    Saenz DT; Fiskus W; Manshouri T; Rajapakshe K; Krieger S; Sun B; Mill CP; DiNardo C; Pemmaraju N; Kadia T; Parmar S; Sharma S; Coarfa C; Qiu P; Verstovsek S; Bhalla KN
    Leukemia; 2017 Mar; 31(3):678-687. PubMed ID: 27677740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias.
    Abdel-Wahab O; Manshouri T; Patel J; Harris K; Yao J; Hedvat C; Heguy A; Bueso-Ramos C; Kantarjian H; Levine RL; Verstovsek S
    Cancer Res; 2010 Jan; 70(2):447-52. PubMed ID: 20068184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of progression of Philadelphia-negative myeloproliferative neoplasms to myelodysplastic syndrome or acute myeloid leukemia by azacitidine: a report on 54 cases on the behalf of the Groupe Francophone des Myelodysplasies (GFM).
    Thepot S; Itzykson R; Seegers V; Raffoux E; Quesnel B; Chait Y; Sorin L; Dreyfus F; Cluzeau T; Delaunay J; Sanhes L; Eclache V; Dartigeas C; Turlure P; Harel S; Salanoubat C; Kiladjian JJ; Fenaux P; Adès L;
    Blood; 2010 Nov; 116(19):3735-42. PubMed ID: 20664061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current clinical strategies and emergent treatment landscapes in leukemic transformation of Philadelphia-negative myeloproliferative neoplasms.
    Abruzzese E; Niscola P
    Expert Rev Hematol; 2020 Dec; 13(12):1349-1359. PubMed ID: 33226274
    [No Abstract]   [Full Text] [Related]  

  • 14. Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia.
    Benton CB; Boddu PC; DiNardo CD; Bose P; Wang F; Assi R; Pemmaraju N; Kc D; Pierce S; Patel K; Konopleva M; Ravandi F; Garcia-Manero G; Kadia TM; Cortes J; Kantarjian HM; Andreeff M; Verstovsek S
    Cancer; 2019 Jun; 125(11):1855-1866. PubMed ID: 30811597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic Vulnerabilities and Epigenetic Dysregulation in Myeloproliferative Neoplasms.
    Sharma V; Wright KL; Epling-Burnette PK; Reuther GW
    Front Immunol; 2020; 11():604142. PubMed ID: 33329600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Humanized Animal Model Predicts Clonal Evolution and Therapeutic Vulnerabilities in Myeloproliferative Neoplasms.
    Celik H; Krug E; Zhang CR; Han W; Issa N; Koh WK; Bjeije H; Kukhar O; Allen M; Li T; Fisher DAC; Fowles JS; Wong TN; Stubbs MC; Koblish HK; Oh ST; Challen GA
    Cancer Discov; 2021 Dec; 11(12):3126-3141. PubMed ID: 34193440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of primary disease on outcome after allogeneic stem cell transplantation for transformed secondary acute leukaemia.
    Kröger N; Eikema DJ; Köster L; Beelen D; de Wreede LC; Finke J; Koenecke C; Niederwieser D; Bornhäuser M; Schoenland S; Potter V; Wolschke C; Maertens J; Theobald M; Kobbe G; Itälä-Remes M; Wulf G; Kahls P; Forcade E; Greinix H; Masszi T; Yakoub-Agha I; Chalandon Y; Robin M;
    Br J Haematol; 2019 May; 185(4):725-732. PubMed ID: 30820933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute myeloid leukemia following a myeloproliferative neoplasm: clinical characteristics, genetic features and effects of therapy.
    Heaney ML; Soriano G
    Curr Hematol Malig Rep; 2013 Jun; 8(2):116-22. PubMed ID: 23572311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resurgence of myeloproliferative neoplasm in patients in remission from blast transformation after treatment with hypomethylating agents.
    Chauvet P; Nibourel O; Berthon C; Goursaud L; Carpentier B; Lionne-Huyghe P; Wemeau M; Quesnel B
    Leuk Res; 2022 Jul; 118():106871. PubMed ID: 35633618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What are the molecular mechanisms driving the switch from MPNs to leukemia?
    Wang X; Hoffman R
    Best Pract Res Clin Haematol; 2021 Mar; 34(1):101254. PubMed ID: 33762108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.