These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37726261)

  • 1. Illuminating the Brain: Advances and Perspectives in Optoelectronics for Neural Activity Monitoring and Modulation.
    Xu S; Momin M; Ahmed S; Hossain A; Veeramuthu L; Pandiyan A; Kuo CC; Zhou T
    Adv Mater; 2023 Oct; 35(42):e2303267. PubMed ID: 37726261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Materials, Devices, and Systems for Neural Interfaces.
    Won SM; Song E; Zhao J; Li J; Rivnay J; Rogers JA
    Adv Mater; 2018 Jul; 30(30):e1800534. PubMed ID: 29855089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber-based optrode with microstructured fiber tips for controlled light delivery in optogenetics.
    Petrovic J; Lange F; Hohlfeld D
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37080213
    [No Abstract]   [Full Text] [Related]  

  • 4. Expanding the Toolbox of Upconversion Nanoparticles for In Vivo Optogenetics and Neuromodulation.
    All AH; Zeng X; Teh DBL; Yi Z; Prasad A; Ishizuka T; Thakor N; Hiromu Y; Liu X
    Adv Mater; 2019 Oct; 31(41):e1803474. PubMed ID: 31432555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices.
    Wang Y; Lin X; Chen X; Chen X; Xu Z; Zhang W; Liao Q; Duan X; Wang X; Liu M; Wang F; He J; Shi P
    Biomaterials; 2017 Oct; 142():136-148. PubMed ID: 28735174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals.
    Wang Y; Xie K; Yue H; Chen X; Luo X; Liao Q; Liu M; Wang F; Shi P
    Nanoscale; 2020 Jan; 12(4):2406-2414. PubMed ID: 31782467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical neuromodulation at all scales: from nanomaterials to wireless optoelectronics and integrated systems.
    Karatum O; Gwak MJ; Hyun J; Onal A; Koirala GR; Kim TI; Nizamoglu S
    Chem Soc Rev; 2023 May; 52(10):3326-3352. PubMed ID: 37018031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a Flexible Optogenetic Device for Multisite and Multiregional Optical Stimulation Through Flexible ยต-LED Displays on the Cerebral Cortex.
    Shang X; Ling W; Chen Y; Li C; Huang X
    Small; 2023 Sep; 19(39):e2302241. PubMed ID: 37260144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light.
    Jeong J; Jung J; Jung D; Kim J; Ju H; Kim T; Lee J
    Biosens Bioelectron; 2021 May; 180():113139. PubMed ID: 33714161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implantable, wireless device platforms for neuroscience research.
    Gutruf P; Rogers JA
    Curr Opin Neurobiol; 2018 Jun; 50():42-49. PubMed ID: 29289027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics.
    Park SI; Shin G; McCall JG; Al-Hasani R; Norris A; Xia L; Brenner DS; Noh KN; Bang SY; Bhatti DL; Jang KI; Kang SK; Mickle AD; Dussor G; Price TJ; Gereau RW; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8169-E8177. PubMed ID: 27911798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode.
    Libbrecht S; Hoffman L; Welkenhuysen M; Van den Haute C; Baekelandt V; Braeken D; Haesler S
    J Neurophysiol; 2018 Jul; 120(1):149-161. PubMed ID: 29589813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Implantable Neural Interfaces for Multimodal Electrical Neuromodulation.
    Wang L; Liu S; Zhao W; Li J; Zeng H; Kang S; Sheng X; Wang L; Fan Y; Yin L
    Adv Healthc Mater; 2024 Sep; 13(24):e2303316. PubMed ID: 38323711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
    Deshmukh A; Brown L; Barbe MF; Braverman AS; Tiwari E; Hobson L; Shunmugam S; Armitage O; Hewage E; Ruggieri MR; Morizio J
    J Neurosci Methods; 2020 Mar; 333():108562. PubMed ID: 31862376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optrode Array for Simultaneous Optogenetic Modulation and Electrical Neural Recording.
    Lee Y; Ryu D; Jeon S; Lee Y; Cho YK; Ji CH; Kim YK; Jun SB
    J Vis Exp; 2022 Sep; (187):. PubMed ID: 36121270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulse-Width Modulation of Optogenetic Photo-Stimulation Intensity for Application to Full-Implantable Light Sources.
    Chen FB; Budgett DM; Sun Y; Malpas S; McCormick D; Freestone PS
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):28-34. PubMed ID: 27542183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and manufacturing challenges of optogenetic neural interfaces: a review.
    Goncalves SB; Ribeiro JF; Silva AF; Costa RM; Correia JH
    J Neural Eng; 2017 Aug; 14(4):041001. PubMed ID: 28452331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-Tissue-like Multifunctional Optoelectronic Mesh for Deep-Brain Modulation and Mapping.
    Lee JM; Lin D; Kim HR; Pyo YW; Hong G; Lieber CM; Park HG
    Nano Lett; 2021 Apr; 21(7):3184-3190. PubMed ID: 33734716
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.