These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37726306)

  • 1. Dynamically tuning friction at the graphene interface using the field effect.
    Greenwood G; Kim JM; Nahid SM; Lee Y; Hajarian A; Nam S; Espinosa-Marzal RM
    Nat Commun; 2023 Sep; 14(1):5801. PubMed ID: 37726306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-Plane Potential Gradient Induces Low Frictional Energy Dissipation during the Stick-Slip Sliding on the Surfaces of 2D Materials.
    He F; Yang X; Bian Z; Xie G; Guo D; Luo J
    Small; 2019 Dec; 15(49):e1904613. PubMed ID: 31639269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Sliding Enhancement on the Friction and Adhesion of Graphene, Graphene Oxide, and Fluorinated Graphene.
    Zeng X; Peng Y; Yu M; Lang H; Cao X; Zou K
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8214-8224. PubMed ID: 29443495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced nanoscale friction on fluorinated graphene.
    Kwon S; Ko JH; Jeon KJ; Kim YH; Park JY
    Nano Lett; 2012 Dec; 12(12):6043-8. PubMed ID: 22720882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polaronic Contributions to Friction in a Manganite Thin Film.
    Weber NA; Schmidt H; Sievert T; Jooss C; Güthoff F; Moshneaga V; Samwer K; Krüger M; Volkert CA
    Adv Sci (Weinh); 2021 Apr; 8(8):2003524. PubMed ID: 33898176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale lubrication of ionic surfaces controlled via a strong electric field.
    Strelcov E; Kumar R; Bocharova V; Sumpter BG; Tselev A; Kalinin SV
    Sci Rep; 2015 Jan; 5():8049. PubMed ID: 25623295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of the friction strengthening of graphene on velocity.
    Zeng X; Peng Y; Liu L; Lang H; Cao X
    Nanoscale; 2018 Jan; 10(4):1855-1864. PubMed ID: 29309078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolving quality of frictional contact with graphene.
    Li S; Li Q; Carpick RW; Gumbsch P; Liu XZ; Ding X; Sun J; Li J
    Nature; 2016 Nov; 539(7630):541-545. PubMed ID: 27882973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Decoding and Tuning Electronic Friction of Si Nanotip Sliding on Graphene.
    Li Y; Wu B; Ouyang W; Liu Z; Wang W
    Nano Lett; 2024 Jan; 24(4):1130-1136. PubMed ID: 38252698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of Nanoscale Friction Contrast between Supported Graphene, MoS
    Vazirisereshk MR; Ye H; Ye Z; Otero-de-la-Roza A; Zhao MQ; Gao Z; Johnson ATC; Johnson ER; Carpick RW; Martini A
    Nano Lett; 2019 Aug; 19(8):5496-5505. PubMed ID: 31267757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of nanoscale and sub-nanoscale friction behavior between graphene and a silicon tip: analysis of tip apex motion.
    Yoon HM; Jung Y; Jun SC; Kondaraju S; Lee JS
    Nanoscale; 2015 Apr; 7(14):6295-303. PubMed ID: 25782533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into dynamic sliding contacts from conductive atomic force microscopy.
    Chan N; Vazirisereshk MR; Martini A; Egberts P
    Nanoscale Adv; 2020 Sep; 2(9):4117-4124. PubMed ID: 36132756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface.
    Dong Y; Ding Y; Rui Z; Lian F; Hui W; Wu J; Wu Z; Yan P
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35180710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Friction at nanopillared polymer surfaces beyond Amontons' laws: Stick-slip amplitude coefficient (SSAC) and multiparametric nanotribological properties.
    Ishak MI; Dobryden I; Martin Claesson P; Briscoe WH; Su B
    J Colloid Interface Sci; 2021 Feb; 583():414-424. PubMed ID: 33011410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic-Scale Friction Characteristics of Graphene under Conductive AFM with Applied Voltages.
    Lang H; Peng Y; Cao X; Zou K
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25503-25511. PubMed ID: 32394710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Interfacial Water in the Tribological Behavior of Graphene in an Electric Field.
    Lang H; Zou K; Chen R; Huang Y; Peng Y
    Nano Lett; 2022 Aug; 22(15):6055-6061. PubMed ID: 35868008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Non-trivial Origin of Atomic-Scale Patterns in Friction Force Microscopy.
    van Baarle DW; Krylov SY; Beck MES; Frenken JWM
    Tribol Lett; 2019; 67(1):15. PubMed ID: 30880879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable Friction on Graphene via Adjustable Interfacial Contact Quality.
    Wang W; Zhang Y; Li Z; Qian L
    Adv Sci (Weinh); 2023 Oct; 10(30):e2303013. PubMed ID: 37661586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phononic Origins of Friction in Carbon Nanotube Oscillators.
    Prasad MV; Bhattacharya B
    Nano Lett; 2017 Apr; 17(4):2131-2137. PubMed ID: 28234012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Friction Behavior of SiO
    Xu RG; Zhang G; Xiang Y; Leng Y
    Langmuir; 2023 May; 39(18):6425-6432. PubMed ID: 37094972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.