BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37726511)

  • 1. Alterations in step frequency and muscle activities using body weight support influence the ventilatory response to sinusoidal walking in humans.
    Fujita M; Kamibayashi K; Horiuchi M; Ebine N; Fukuoka Y
    Sci Rep; 2023 Sep; 13(1):15534. PubMed ID: 37726511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential kinetics of the cardiac, ventilatory, and gas exchange variables during walking under moderate hypoxia.
    Ebine N; Aoki T; Itoh M; Fukuoka Y
    PLoS One; 2018; 13(7):e0200186. PubMed ID: 30044809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Step Frequency on the Dynamic Characteristics of Ventilation and Gas Exchange During Sinusoidal Walking in humans.
    Fujita M; Kamibayashi K; Aoki T; Horiuchi M; Fukuoka Y
    Front Physiol; 2022; 13():820666. PubMed ID: 35492612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Characteristics of Ventilatory and Gas Exchange during Sinusoidal Walking in Humans.
    Fukuoka Y; Iihoshi M; Nazunin JT; Abe D; Fukuba Y
    PLoS One; 2017; 12(1):e0168517. PubMed ID: 28076413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The combined effects of body weight support and gait speed on gait related muscle activity: a comparison between walking in the Lokomat exoskeleton and regular treadmill walking.
    Van Kammen K; Boonstra A; Reinders-Messelink H; den Otter R
    PLoS One; 2014; 9(9):e107323. PubMed ID: 25226302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy cost and lower leg muscle activities during erect bipedal locomotion under hyperoxia.
    Abe D; Fukuoka Y; Maeda T; Horiuchi M
    J Physiol Anthropol; 2018 Jun; 37(1):18. PubMed ID: 29914562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Age on Cardiorespiratory Kinetics During Sinusoidal Walking in Humans.
    Ebine N; Ahad-Abdulkarim-D A; Miyake Y; Hojo T; Abe D; Horiuchi M; Fukuoka Y
    Front Physiol; 2018; 9():1191. PubMed ID: 30197604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The muscle reflex and chemoreflex interaction: ventilatory implications for the exercising human.
    Wan HY; Weavil JC; Thurston TS; Georgescu VP; Bledsoe AD; Jessop JE; Buys MJ; Richardson RS; Amann M
    J Appl Physiol (1985); 2020 Oct; 129(4):691-700. PubMed ID: 32816637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trunk muscle activity during walking in persons with multiple sclerosis: the influence of body weight support.
    Swinnen E; Baeyens JP; Pintens S; Van Nieuwenhoven J; Ilsbroukx S; Clijsen R; Buyl R; Goossens M; Meeusen R; Kerckhofs E
    NeuroRehabilitation; 2014; 34(2):323-35. PubMed ID: 24419023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle activity during backward and forward running with body weight support.
    Masumoto K; Soucy MT; Bailey JP; Mercer JA
    Hum Mov Sci; 2017 Oct; 55():276-286. PubMed ID: 28886464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticospinal excitability during walking in humans with absent and partial body weight support.
    Knikou M; Hajela N; Mummidisetty CK
    Clin Neurophysiol; 2013 Dec; 124(12):2431-8. PubMed ID: 23810634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of body weight support and guidance force settings on muscle synergy during Lokomat walking.
    Cherni Y; Hajizadeh M; Dal Maso F; Turpin NA
    Eur J Appl Physiol; 2021 Nov; 121(11):2967-2980. PubMed ID: 34218291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of body weight support on ankle mechanics during treadmill walking.
    Lewek MD
    J Biomech; 2011 Jan; 44(1):128-33. PubMed ID: 20855074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of body weight support on muscle activation during walking on a lower body positive pressure treadmill.
    Kristiansen M; Odderskær N; Kristensen DH
    J Electromyogr Kinesiol; 2019 Oct; 48():9-16. PubMed ID: 31176846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle activation during body weight-supported locomotion while using the ZeroG.
    Fenuta AM; Hicks AL
    J Rehabil Res Dev; 2014; 51(1):51-8. PubMed ID: 24805893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soleus H-reflex modulation during body weight support treadmill walking in spinal cord intact and injured subjects.
    Knikou M; Angeli CA; Ferreira CK; Harkema SJ
    Exp Brain Res; 2009 Mar; 193(3):397-407. PubMed ID: 19011843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of stride frequency manipulation on physiological and perceptual responses during backward and forward running with body weight support.
    Masumoto K; Denton D; Craig-Jones A; Mercer JA
    Eur J Appl Physiol; 2020 Jul; 120(7):1519-1530. PubMed ID: 32350595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface EMG-based quantification of inspiratory effort: a quantitative comparison with P
    Graßhoff J; Petersen E; Farquharson F; Kustermann M; Kabitz HJ; Rostalski P; Walterspacher S
    Crit Care; 2021 Dec; 25(1):441. PubMed ID: 34930396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms affecting exercise ventilatory inefficiency-airflow obstruction relationship in male patients with chronic obstructive pulmonary disease.
    Chuang ML
    Respir Res; 2020 Aug; 21(1):206. PubMed ID: 32762752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse relationship between changes of maximal aerobic capacity and changes in walking economy after weight loss.
    Borges JH; Carter SJ; Singh H; Hunter GR
    Eur J Appl Physiol; 2018 Aug; 118(8):1573-1578. PubMed ID: 29767350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.