These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37726680)

  • 1. Exploring the variable importance in random forests under correlations: a general concept applied to donor organ quality in post-transplant survival.
    Wies C; Miltenberger R; Grieser G; Jahn-Eimermacher A
    BMC Med Res Methodol; 2023 Sep; 23(1):209. PubMed ID: 37726680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use and misuse of random forest variable importance metrics in medicine: demonstrations through incident stroke prediction.
    Wallace ML; Mentch L; Wheeler BJ; Tapia AL; Richards M; Zhou S; Yi L; Redline S; Buysse DJ
    BMC Med Res Methodol; 2023 Jun; 23(1):144. PubMed ID: 37337173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial intelligence for predicting survival following deceased donor liver transplantation: Retrospective multi-center study.
    Yu YD; Lee KS; Man Kim J; Ryu JH; Lee JG; Lee KW; Kim BW; Kim DS;
    Int J Surg; 2022 Sep; 105():106838. PubMed ID: 36028137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival.
    Ishwaran H; Lu M
    Stat Med; 2019 Feb; 38(4):558-582. PubMed ID: 29869423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Who can tolerate a marginal kidney? Predicting survival after deceased donor kidney transplant by donor-recipient combination.
    Bae S; Massie AB; Thomas AG; Bahn G; Luo X; Jackson KR; Ottmann SE; Brennan DC; Desai NM; Coresh J; Segev DL; Garonzik Wang JM
    Am J Transplant; 2019 Feb; 19(2):425-433. PubMed ID: 29935051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
    Liu Y; Zhou S; Wei H; An S
    BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival prediction models since liver transplantation - comparisons between Cox models and machine learning techniques.
    Kantidakis G; Putter H; Lancia C; Boer J; Braat AE; Fiocco M
    BMC Med Res Methodol; 2020 Nov; 20(1):277. PubMed ID: 33198650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictors of 1-year outcome after cardiac re-transplantation: Machine learning analysis.
    Kainuma A; Ning Y; Kurlansky PA; Wang AS; Latif F; Sayer GT; Uriel N; Kaku Y; Naka Y; Takeda K
    Clin Transplant; 2022 Sep; 36(9):e14761. PubMed ID: 35730923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of a predictor's importance by Random Forests when there is missing data: risk prediction in liver surgery using laboratory data.
    Hapfelmeier A; Hothorn T; Riediger C; Ulm K
    Int J Biostat; 2014; 10(2):165-83. PubMed ID: 24914728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using machine learning and an ensemble of methods to predict kidney transplant survival.
    Mark E; Goldsman D; Gurbaxani B; Keskinocak P; Sokol J
    PLoS One; 2019; 14(1):e0209068. PubMed ID: 30625130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of a prognostic model for kidney function 1 year after combined pancreas and kidney transplantation using pre-transplant donor and recipient variables.
    Zorn KS; Littbarski S; Schwager Y; Kaltenborn A; Beneke J; Gwiasda J; Becker T; Braun F; Reichert B; Klempnauer J; Schrem H
    Langenbecks Arch Surg; 2018 Nov; 403(7):837-849. PubMed ID: 30338375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bias in random forest variable importance measures: illustrations, sources and a solution.
    Strobl C; Boulesteix AL; Zeileis A; Hothorn T
    BMC Bioinformatics; 2007 Jan; 8():25. PubMed ID: 17254353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of imbalanced data using machine learning algorithms to predict the risk of renal graft failures in Ethiopia.
    Mulugeta G; Zewotir T; Tegegne AS; Juhar LH; Muleta MB
    BMC Med Inform Decis Mak; 2023 May; 23(1):98. PubMed ID: 37217892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injury severity prediction of cyclist crashes using random forests and random parameters logit models.
    Scarano A; Rella Riccardi M; Mauriello F; D'Agostino C; Pasquino N; Montella A
    Accid Anal Prev; 2023 Nov; 192():107275. PubMed ID: 37683568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Machine Learning Approach Using Survival Statistics to Predict Graft Survival in Kidney Transplant Recipients: A Multicenter Cohort Study.
    Yoo KD; Noh J; Lee H; Kim DK; Lim CS; Kim YH; Lee JP; Kim G; Kim YS
    Sci Rep; 2017 Aug; 7(1):8904. PubMed ID: 28827646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Relative Importance of Clinical and Socio-demographic Variables in Prognostic Prediction in Non-Small Cell Lung Cancer: A Variable Importance Approach.
    He J; Zhang JX; Chen CT; Ma Y; De Guzman R; Meng J; Pu Y
    Med Care; 2020 May; 58(5):461-467. PubMed ID: 31985586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survival analysis for pediatric heart transplant patients using a novel machine learning algorithm: A UNOS analysis.
    Ashfaq A; Gray GM; Carapelluci J; Amankwah EK; Rehman M; Puchalski M; Smith A; Quintessenza JA; Laks J; Ahumada LM; Asante-Korang A
    J Heart Lung Transplant; 2023 Oct; 42(10):1341-1348. PubMed ID: 37327979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction modeling-part 2: using machine learning strategies to improve transplantation outcomes.
    Coorey CP; Sharma A; Muller S; Yang JYH
    Kidney Int; 2021 Apr; 99(4):817-823. PubMed ID: 32916179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual risk prediction: Comparing random forests with Cox proportional-hazards model by a simulation study.
    Baralou V; Kalpourtzi N; Touloumi G
    Biom J; 2023 Aug; 65(6):e2100380. PubMed ID: 36169048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covariance regression with random forests.
    Alakus C; Larocque D; Labbe A
    BMC Bioinformatics; 2023 Jun; 24(1):258. PubMed ID: 37330468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.