BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 37727907)

  • 1. A personalized cortical atlas for functional regions of interest.
    Molloy MF; Osher DE
    J Neurophysiol; 2023 Nov; 130(5):1067-1080. PubMed ID: 37727907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting high-level visual areas in the absence of task fMRI.
    Molloy MF; Saygin ZM; Osher DE
    Sci Rep; 2024 May; 14(1):11376. PubMed ID: 38762549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual-Specific Areal-Level Parcellations Improve Functional Connectivity Prediction of Behavior.
    Kong R; Yang Q; Gordon E; Xue A; Yan X; Orban C; Zuo XN; Spreng N; Ge T; Holmes A; Eickhoff S; Yeo BTT
    Cereb Cortex; 2021 Aug; 31(10):4477-4500. PubMed ID: 33942058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using connectomics for predictive assessment of brain parcellations.
    Albers KJ; Ambrosen KS; Liptrot MG; Dyrby TB; Schmidt MN; Mørup M
    Neuroimage; 2021 Sep; 238():118170. PubMed ID: 34087365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual Variability in Performance Reflects Selectivity of the Multiple Demand Network among Children and Adults.
    Schettini E; Hiersche KJ; Saygin ZM
    J Neurosci; 2023 Mar; 43(11):1940-1951. PubMed ID: 36750368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. sGraSP: A graph-based method for the derivation of subject-specific functional parcellations of the brain.
    Honnorat N; Satterthwaite TD; Gur RE; Gur RC; Davatzikos C
    J Neurosci Methods; 2017 Feb; 277():1-20. PubMed ID: 27913211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural evidence for non-orofacial triggers in mild misophonia.
    Hansen HA; Stefancin P; Leber AB; Saygin ZM
    Front Neurosci; 2022; 16():880759. PubMed ID: 36017175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Working memory capacity and the functional connectome - insights from resting-state fMRI and voxelwise centrality mapping.
    Markett S; Reuter M; Heeren B; Lachmann B; Weber B; Montag C
    Brain Imaging Behav; 2018 Feb; 12(1):238-246. PubMed ID: 28247158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual parcellation of resting fMRI with a group functional connectivity prior.
    Chong M; Bhushan C; Joshi AA; Choi S; Haldar JP; Shattuck DW; Spreng RN; Leahy RM
    Neuroimage; 2017 Aug; 156():87-100. PubMed ID: 28478226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating methods for measuring background connectivity in slow event-related functional magnetic resonance imaging designs.
    Frank LE; Zeithamova D
    Brain Behav; 2023 Jun; 13(6):e3015. PubMed ID: 37062880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state.
    Cao H; Plichta MM; Schäfer A; Haddad L; Grimm O; Schneider M; Esslinger C; Kirsch P; Meyer-Lindenberg A; Tost H
    Neuroimage; 2014 Jan; 84():888-900. PubMed ID: 24055506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presurgical brain mapping of the language network in pediatric patients with epilepsy using resting-state fMRI.
    Pur DR; Eagleson R; Lo M; Jurkiewicz MT; Andrade A; de Ribaupierre S
    J Neurosurg Pediatr; 2021 Jan; 27(3):259-268. PubMed ID: 33418528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
    Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ
    Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resting-state functional MRI studies on infant brains: A decade of gap-filling efforts.
    Zhang H; Shen D; Lin W
    Neuroimage; 2019 Jan; 185():664-684. PubMed ID: 29990581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correspondence between evoked and intrinsic functional brain network configurations.
    Bolt T; Nomi JS; Rubinov M; Uddin LQ
    Hum Brain Mapp; 2017 Apr; 38(4):1992-2007. PubMed ID: 28052450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain parcellation selection: An overlooked decision point with meaningful effects on individual differences in resting-state functional connectivity.
    Bryce NV; Flournoy JC; Guassi Moreira JF; Rosen ML; Sambook KA; Mair P; McLaughlin KA
    Neuroimage; 2021 Nov; 243():118487. PubMed ID: 34419594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional connectivity in amygdalar-sensory/(pre)motor networks at rest: new evidence from the Human Connectome Project.
    Toschi N; Duggento A; Passamonti L
    Eur J Neurosci; 2017 May; 45(9):1224-1229. PubMed ID: 28231395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of individualized task activation in sensory modality-selective frontal cortex with 'connectome fingerprinting'.
    Tobyne SM; Somers DC; Brissenden JA; Michalka SW; Noyce AL; Osher DE
    Neuroimage; 2018 Dec; 183():173-185. PubMed ID: 30092348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resting-state network mapping in neurosurgical practice: a review.
    Hacker CD; Roland JL; Kim AH; Shimony JS; Leuthardt EC
    Neurosurg Focus; 2019 Dec; 47(6):E15. PubMed ID: 31786561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.