These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3772827)

  • 1. Gating of sensory information: joint computations of phase and amplitude data in the midbrain of the electric fish, Eigenmannia.
    Heiligenberg W; Rose G
    J Comp Physiol A; 1986 Sep; 159(3):311-24. PubMed ID: 3772827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the jamming avoidance response of Eigenmannia.
    Heiligenberg W; Rose G
    J Neurosci; 1985 Feb; 5(2):515-31. PubMed ID: 3973680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 'Recognition units' at the top of a neuronal hierarchy? Prepacemaker neurons in Eigenmannia code the sign of frequency differences unambiguously.
    Rose GJ; Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1988 Apr; 162(6):759-72. PubMed ID: 3397919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural coding of difference frequencies in the midbrain of the electric fish Eigenmannia: reading the sense of rotation in an amplitude-phase plane.
    Rose G; Heiligenberg W
    J Comp Physiol A; 1986 May; 158(5):613-24. PubMed ID: 3735159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulus discrimination in the diencephalon of Eigenmannia: the emergence and sharpening of a sensory filter.
    Keller CH
    J Comp Physiol A; 1988 Apr; 162(6):747-57. PubMed ID: 3397918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The complexity of high-frequency electric fields degrades electrosensory inputs: implications for the jamming avoidance response in weakly electric fish.
    Shifman AR; Lewis JE
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29367237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear response properties of combination-sensitive electrosensory neurons in the midbrain of Gymnarchus niloticus.
    Carlson BA; Kawasaki M
    J Neurosci; 2004 Sep; 24(37):8039-48. PubMed ID: 15371504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The jamming avoidance response in Eigenmannia is controlled by two separate motor pathways.
    Metzner W
    J Neurosci; 1993 May; 13(5):1862-78. PubMed ID: 8478680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'Ancestral' neural mechanisms of electrolocation suggest a substrate for the evolution of the jamming avoidance response.
    Rose G; Keller C; Heiligenberg W
    J Comp Physiol A; 1987 Apr; 160(4):491-500. PubMed ID: 3598922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrosensory maps form a substrate for the distributed and parallel control of behavioral responses in weakly electric fish.
    Heiligenberg W
    Brain Behav Evol; 1988; 31(1):6-16. PubMed ID: 3334906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulus selectivity is enhanced by voltage-dependent conductances in combination-sensitive neurons.
    Carlson BA; Kawasaki M
    J Neurophysiol; 2006 Dec; 96(6):3362-77. PubMed ID: 17005607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex recognition and neuronal coding of electric organ discharge waveform in the pulse-type weakly electric fish, Hypopomus occidentalis.
    Shumway CA; Zelick RD
    J Comp Physiol A; 1988 Aug; 163(4):465-78. PubMed ID: 3184009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independently evolved jamming avoidance responses employ identical computational algorithms: a behavioral study of the African electric fish, Gymnarchus niloticus.
    Kawasaki M
    J Comp Physiol A; 1993 Jul; 173(1):9-22. PubMed ID: 8366474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emergence of temporal-pattern sensitive neurons in the midbrain of weakly electric fish Gymnarchus niloticus.
    Kawasaki M; Guo YX
    J Physiol Paris; 2002; 96(5-6):531-7. PubMed ID: 14692500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From distributed sensory processing to discrete motor representations in the diencephalon of the electric fish, Eigenmannia.
    Keller CH; Heiligenberg W
    J Comp Physiol A; 1989 Feb; 164(5):565-76. PubMed ID: 2565397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics and stimulus-dependence of pacemaker control during behavioral modulations in the weakly electric fish, Apteronotus.
    Dye J
    J Comp Physiol A; 1987 Aug; 161(2):175-85. PubMed ID: 3625571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory cues for the gradual frequency fall responses of the gymnotiform electric fish, Rhamphichthys rostratus.
    Kawasaki M; Prather J; Guo YX
    J Comp Physiol A; 1996 Apr; 178(4):453-62. PubMed ID: 8847661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolving competing theories for control of the jamming avoidance response: the role of amplitude modulations in electric organ discharge decelerations.
    Takizawa Y; Rose GJ; Kawasaki M
    J Exp Biol; 1999 May; 202(Pt 10):1377-86. PubMed ID: 10210678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The coding of signals in the electric communication of the gymnotiform fish Eigenmannia: from electroreceptors to neurons in the torus semicircularis of the midbrain.
    Metzner W; Heiligenberg W
    J Comp Physiol A; 1991 Aug; 169(2):135-50. PubMed ID: 1748973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An internal current source yields immunity of electrosensory information processing to unusually strong jamming in electric fish.
    Heiligenberg W; Kawasaki M
    J Comp Physiol A; 1992 Oct; 171(3):309-16. PubMed ID: 1447722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.