These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 37728310)

  • 1. Implications of ubiquitination and the maintenance of replication fork stability in cancer therapy.
    Xia D; Zhu X; Wang Y; Gong P; Su HS; Xu X
    Biosci Rep; 2023 Oct; 43(10):. PubMed ID: 37728310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquitylation at the Fork: Making and Breaking Chains to Complete DNA Replication.
    Yates M; Maréchal A
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30257459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tough row to hoe: when replication forks encounter DNA damage.
    Patel DR; Weiss RS
    Biochem Soc Trans; 2018 Dec; 46(6):1643-1651. PubMed ID: 30514768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RFWD3 promotes ZRANB3 recruitment to regulate the remodeling of stalled replication forks.
    Moore CE; Yalcindag SE; Czeladko H; Ravindranathan R; Wijesekara Hanthi Y; Levy JC; Sannino V; Schindler D; Ciccia A; Costanzo V; Elia AEH
    J Cell Biol; 2023 May; 222(5):. PubMed ID: 37036693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fork in the road: Where homologous recombination and stalled replication fork protection part ways.
    Tye S; Ronson GE; Morris JR
    Semin Cell Dev Biol; 2021 May; 113():14-26. PubMed ID: 32653304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SMARCAL1 ubiquitylation controls its association with RPA-coated ssDNA and promotes replication fork stability.
    Yates M; Marois I; St-Hilaire E; Ronato DA; Djerir B; Brochu C; Morin T; Hammond-Martel I; Gezzar-Dandashi S; Casimir L; Drobetsky E; Cappadocia L; Masson JY; Wurtele H; Maréchal A
    PLoS Biol; 2024 Mar; 22(3):e3002552. PubMed ID: 38502677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RFWD3-Dependent Ubiquitination of RPA Regulates Repair at Stalled Replication Forks.
    Elia AE; Wang DC; Willis NA; Boardman AP; Hajdu I; Adeyemi RO; Lowry E; Gygi SP; Scully R; Elledge SJ
    Mol Cell; 2015 Oct; 60(2):280-93. PubMed ID: 26474068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PCNA-mediated stabilization of E3 ligase RFWD3 at the replication fork is essential for DNA replication.
    Lin YC; Wang Y; Hsu R; Giri S; Wopat S; Arif MK; Chakraborty A; Prasanth KV; Prasanth SG
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13282-13287. PubMed ID: 30530694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of arrested replication forks by homologous recombination is error-prone.
    Iraqui I; Chekkal Y; Jmari N; Pietrobon V; Fréon K; Costes A; Lambert SA
    PLoS Genet; 2012; 8(10):e1002976. PubMed ID: 23093942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.
    Wu Y; Lee SH; Williamson EA; Reinert BL; Cho JH; Xia F; Jaiswal AS; Srinivasan G; Patel B; Brantley A; Zhou D; Shao L; Pathak R; Hauer-Jensen M; Singh S; Kong K; Wu X; Kim HS; Beissbarth T; Gaedcke J; Burma S; Nickoloff JA; Hromas RA
    PLoS Genet; 2015 Dec; 11(12):e1005675. PubMed ID: 26684013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNF4 controls the extent of replication fork reversal to preserve genome stability.
    Ding L; Luo Y; Tian T; Chen X; Yang Y; Bu M; Han J; Yang B; Yan H; Liu T; Wu M; Zhang G; Xu Y; Zhu S; Huen MSY; Mao G; Huang J
    Nucleic Acids Res; 2022 Jun; 50(10):5672-5687. PubMed ID: 35640614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CtIP mediates replication fork recovery in a FANCD2-regulated manner.
    Yeo JE; Lee EH; Hendrickson EA; Sobeck A
    Hum Mol Genet; 2014 Jul; 23(14):3695-705. PubMed ID: 24556218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments.
    Liao H; Ji F; Helleday T; Ying S
    EMBO Rep; 2018 Sep; 19(9):. PubMed ID: 30108055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Making Choices: DNA Replication Fork Recovery Mechanisms.
    Kondratick CM; Washington MT; Spies M
    Semin Cell Dev Biol; 2021 May; 113():27-37. PubMed ID: 33967572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes.
    Hu L; Kim TM; Son MY; Kim SA; Holland CL; Tateishi S; Kim DH; Yew PR; Montagna C; Dumitrache LC; Hasty P
    Nature; 2013 Sep; 501(7468):569-72. PubMed ID: 24013173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RADX prevents genome instability by confining replication fork reversal to stalled forks.
    Krishnamoorthy A; Jackson J; Mohamed T; Adolph M; Vindigni A; Cortez D
    Mol Cell; 2021 Jul; 81(14):3007-3017.e5. PubMed ID: 34107305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquitylation at Stressed Replication Forks: Mechanisms and Functions.
    Mirsanaye AS; Typas D; Mailand N
    Trends Cell Biol; 2021 Jul; 31(7):584-597. PubMed ID: 33612353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DCAF14 promotes stalled fork stability to maintain genome integrity.
    Townsend A; Lora G; Engel J; Tirado-Class N; Dungrawala H
    Cell Rep; 2021 Jan; 34(4):108669. PubMed ID: 33503431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. E3 ligase RFWD3 is a novel modulator of stalled fork stability in BRCA2-deficient cells.
    Duan H; Mansour S; Reed R; Gillis MK; Parent B; Liu B; Sztupinszki Z; Birkbak N; Szallasi Z; Elia AEH; Garber JE; Pathania S
    J Cell Biol; 2020 Jun; 219(6):. PubMed ID: 32391871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preventing replication fork collapse to maintain genome integrity.
    Cortez D
    DNA Repair (Amst); 2015 Aug; 32():149-157. PubMed ID: 25957489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.