BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37729058)

  • 1. Generation of mouse models carrying B cell restricted single or multiplexed loss-of-function mutations through CRISPR-Cas9 gene editing.
    Ten Hacken E; Gruber M; Hernández-Sánchez M; Hoffmann GB; Baranowski K; Redd RA; Clement K; Livak K; Wu CJ
    STAR Protoc; 2023 Dec; 4(4):102165. PubMed ID: 37729058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for the saturation and multiplexing of genetic variants using CRISPR-Cas9.
    Sahu S; Sullivan T; Southon E; Caylor D; Geh J; Sharan SK
    STAR Protoc; 2023 Dec; 4(4):102702. PubMed ID: 37948185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol for biallelic tagging of an endogenous gene using CRISPR-Cas9 in human cells.
    Kong N; Chan YW
    STAR Protoc; 2023 May; 4(2):102286. PubMed ID: 37252842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed CRISPR-Cas9 protocol for large transgene integration into the Schistosoma mansoni genome.
    Ittiprasert W; Moescheid MM; Mann VH; Brindley PJ
    STAR Protoc; 2024 Mar; 5(1):102886. PubMed ID: 38354082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A user-friendly and streamlined protocol for CRISPR/Cas9 genome editing in budding yeast.
    Novarina D; Koutsoumpa A; Milias-Argeitis A
    STAR Protoc; 2022 Jun; 3(2):101358. PubMed ID: 35712010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protocol for gene characterization in Aspergillus niger using 5S rRNA-CRISPR-Cas9-mediated Tet-on inducible promoter exchange.
    Zheng X; Cairns T; Zheng P; Meyer V; Sun J
    STAR Protoc; 2022 Dec; 3(4):101838. PubMed ID: 36595926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol for CRISPR-Cas9-mediated genome editing to study spermatogenesis in Caenorhabditis elegans.
    Wang P; Cao Z; Wang Q; Ma X; Wang N; Chen L; Zhao Y; Miao L
    STAR Protoc; 2023 Dec; 4(4):102720. PubMed ID: 37967017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol for generating mutant zebrafish using CRISPR-Cas9 followed by quantitative evaluation of vascular formation.
    Luo J; Lu C; Wang M; Yang X
    STAR Protoc; 2023 Dec; 4(4):102753. PubMed ID: 38041822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting CRISPR/Cas9 to engineer precise segmental deletions in mouse embryonic stem cells.
    Elango R; Panday A; Willis NA; Scully R
    STAR Protoc; 2022 Sep; 3(3):101551. PubMed ID: 36042887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation and single-cell RNA-seq analyses of human pluripotent-stem-cell-derived renal organoids.
    Lian E; Pietrobon A; Stanford WL
    STAR Protoc; 2023 May; 4(2):102314. PubMed ID: 37220001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9-induced gene knockout in zebrafish.
    Medishetti R; Balamurugan K; Yadavalli K; Rani R; Sevilimedu A; Challa AK; Parsa K; Chatti K
    STAR Protoc; 2022 Dec; 3(4):101779. PubMed ID: 36317180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined lentiviral- and RNA-mediated CRISPR/Cas9 delivery for efficient and traceable gene editing in human hematopoietic stem and progenitor cells.
    Yudovich D; Bäckström A; Schmiderer L; Žemaitis K; Subramaniam A; Larsson J
    Sci Rep; 2020 Dec; 10(1):22393. PubMed ID: 33372184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol for performing pooled CRISPR-Cas9 loss-of-function screens.
    Mathiowetz AJ; Roberts MA; Morgens DW; Olzmann JA; Li Z
    STAR Protoc; 2023 Mar; 4(2):102201. PubMed ID: 37000620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR generation of CSF1R-G795A human microglia for robust microglia replacement in a chimeric mouse model.
    Chadarevian JP; Davtyan H; Lombroso SI; Bennett FC; Blurton-Jones M
    STAR Protoc; 2023 Sep; 4(3):102490. PubMed ID: 37516973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of mouse hippocampal neural precursor cell lines with CRISPR/Cas9-mediated gene knockouts.
    Zocher S; Kempermann G
    STAR Protoc; 2021 Jun; 2(2):100472. PubMed ID: 33948565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the function of murine quiescent hematopoietic stem cells following non-homologous end joining-based genome editing.
    Shiroshita K; Kobayashi H; Takubo K
    STAR Protoc; 2023 Jun; 4(2):102347. PubMed ID: 37300828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized protocol to generate genome-wide inactivated Cas9-expressing murine T cells.
    Laprie-Sentenac M; Cretet-Rodeschini C; Menger L
    STAR Protoc; 2023 Mar; 4(1):101922. PubMed ID: 36516053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas9 strategies to insert MS2 stem-loops into endogenous loci in
    Hoppe C; Ashe HL
    STAR Protoc; 2021 Mar; 2(1):100380. PubMed ID: 33786461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol for generation of humanized HCC mouse model and cancer-driver mutations using CRISPR-Cas9.
    Zhu Y; Tahara SM; Tsukamoto H; Machida K
    STAR Protoc; 2023 Dec; 4(4):102389. PubMed ID: 38103196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized protocols for efficient gene editing in mouse hepatocytes
    Chen Y; Ding Q
    STAR Protoc; 2022 Mar; 3(1):101062. PubMed ID: 35005644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.