These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37729122)

  • 1. Diagnostic test accuracy of artificial intelligence in screening for referable diabetic retinopathy in real-world settings: A systematic review and meta-analysis.
    Uy H; Fielding C; Hohlfeld A; Ochodo E; Opare A; Mukonda E; Minnies D; Engel ME
    PLOS Glob Public Health; 2023; 3(9):e0002160. PubMed ID: 37729122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnostic accuracy of smartphone-based artificial intelligence systems for detecting diabetic retinopathy: A systematic review and meta-analysis.
    Hasan SU; Siddiqui MAR
    Diabetes Res Clin Pract; 2023 Nov; 205():110943. PubMed ID: 37805002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of Automated Screening for Referable Diabetic Retinopathy With an Autonomous Diagnostic Artificial Intelligence System in a Spanish Population.
    Shah A; Clarida W; Amelon R; Hernaez-Ortega MC; Navea A; Morales-Olivas J; Dolz-Marco R; Verbraak F; Jorda PP; van der Heijden AA; Peris Martinez C
    J Diabetes Sci Technol; 2021 May; 15(3):655-663. PubMed ID: 32174153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Utility of Smartphone-Based Artificial Intelligence Approaches for Diabetic Retinopathy: A Literature Review and Meta-Analysis.
    Sheikh A; Bhatti A; Adeyemi O; Raja M; Sheikh I
    J Curr Ophthalmol; 2021; 33(3):219-226. PubMed ID: 34765807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnostic Accuracy of Artificial Intelligence-Based Automated Diabetic Retinopathy Screening in Real-World Settings: A Systematic Review and Meta-Analysis.
    Joseph S; Selvaraj J; Mani I; Kumaragurupari T; Shang X; Mudgil P; Ravilla T; He M
    Am J Ophthalmol; 2024 Jul; 263():214-230. PubMed ID: 38438095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study.
    Ming S; Xie K; Lei X; Yang Y; Zhao Z; Li S; Jin X; Lei B
    Int Ophthalmol; 2021 Apr; 41(4):1291-1299. PubMed ID: 33389425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of artificial intelligence in diabetic retinopathy screening: a systematic review and meta-analysis of prospective studies.
    Wang Z; Li Z; Li K; Mu S; Zhou X; Di Y
    Front Endocrinol (Lausanne); 2023; 14():1197783. PubMed ID: 37383397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use in clinical practice of an automated screening method of diabetic retinopathy that can be derived using a diagnostic artificial intelligence system.
    Peris-Martínez C; Shaha A; Clarida W; Amelon R; Hernáez-Ortega MC; Navea A; Morales-Olivas J; Dolz-Marco R; Pérez-Jordá P; Verbraak F; Heijden AAV
    Arch Soc Esp Oftalmol (Engl Ed); 2021 Mar; 96(3):117-126. PubMed ID: 33153819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnostic Accuracy of Automated Diabetic Retinopathy Image Assessment Softwares: IDx-DR and Medios Artificial Intelligence.
    Grzybowski A; Rao DP; Brona P; Negiloni K; Krzywicki T; Savoy FM
    Ophthalmic Res; 2023; 66(1):1286-1292. PubMed ID: 37757777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Smartphones to Detect Diabetic Retinopathy: Scoping Review and Meta-Analysis of Diagnostic Test Accuracy Studies.
    Tan CH; Kyaw BM; Smith H; Tan CS; Tudor Car L
    J Med Internet Res; 2020 May; 22(5):e16658. PubMed ID: 32347810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study.
    Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW
    Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence-based screening for diabetic retinopathy at community hospital.
    He J; Cao T; Xu F; Wang S; Tao H; Wu T; Sun L; Chen J
    Eye (Lond); 2020 Mar; 34(3):572-576. PubMed ID: 31455902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnostic Accuracy of Community-Based Diabetic Retinopathy Screening With an Offline Artificial Intelligence System on a Smartphone.
    Natarajan S; Jain A; Krishnan R; Rogye A; Sivaprasad S
    JAMA Ophthalmol; 2019 Oct; 137(10):1182-1188. PubMed ID: 31393538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diagnostic test accuracy of diabetic retinopathy screening by physician graders using a hand-held non-mydriatic retinal camera at a tertiary level medical clinic.
    Piyasena MMPN; Yip JLY; MacLeod D; Kim M; Gudlavalleti VSM
    BMC Ophthalmol; 2019 Apr; 19(1):89. PubMed ID: 30961576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.
    Virgili G; Menchini F; Murro V; Peluso E; Rosa F; Casazza G
    Cochrane Database Syst Rev; 2011 Jul; (7):CD008081. PubMed ID: 21735421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic review and meta-analysis of diagnostic accuracy of detection of any level of diabetic retinopathy using digital retinal imaging.
    Piyasena MMPN; Murthy GVS; Yip JLY; Gilbert C; Peto T; Gordon I; Hewage S; Kamalakannan S
    Syst Rev; 2018 Nov; 7(1):182. PubMed ID: 30404665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of deep neural network-based artificial intelligence method in diabetic retinopathy screening: a systematic review and meta-analysis of diagnostic test accuracy.
    Wang S; Zhang Y; Lei S; Zhu H; Li J; Wang Q; Yang J; Chen S; Pan H
    Eur J Endocrinol; 2020 Jun; 183(1):41-49. PubMed ID: 32504495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of Artificial Intelligence-Based Diabetic Retinopathy Screening in a Tertiary Care Hospital in Quebec: Prospective Validation Study.
    Antaki F; Hammana I; Tessier MC; Boucher A; David Jetté ML; Beauchemin C; Hammamji K; Ong AY; Rhéaume MA; Gauthier D; Harissi-Dagher M; Keane PA; Pomp A
    JMIR Diabetes; 2024 Sep; 9():e59867. PubMed ID: 39226095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated analysis of retinal images for detection of referable diabetic retinopathy.
    Abràmoff MD; Folk JC; Han DP; Walker JD; Williams DF; Russell SR; Massin P; Cochener B; Gain P; Tang L; Lamard M; Moga DC; Quellec G; Niemeijer M
    JAMA Ophthalmol; 2013 Mar; 131(3):351-7. PubMed ID: 23494039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.