These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37729390)

  • 1. Sulfite Poses a Risk of Hexavalent Chromium Rebound in Vadose Zone: A Challenge of the Stability of Cr
    Li Y; Chen X; Tian X; Liang J; Zhao Z; Ye J; Liu Y; Tong M
    Environ Sci Technol; 2023 Oct; 57(40):15203-15212. PubMed ID: 37729390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rates of Cr(VI) Generation from Cr
    Pan C; Liu H; Catalano JG; Qian A; Wang Z; Giammar DE
    Environ Sci Technol; 2017 Nov; 51(21):12416-12423. PubMed ID: 29043792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of hexavalent chromium from wastewater by Cu/Fe bimetallic nanoparticles.
    Ye J; Wang Y; Xu Q; Wu H; Tong J; Shi J
    Sci Rep; 2021 May; 11(1):10848. PubMed ID: 34035405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of Cr(III)-Fe(III) Mixed-Phase Hydroxides by Chlorine: Implications on the Control of Hexavalent Chromium in Drinking Water.
    Chebeir M; Liu H
    Environ Sci Technol; 2018 Jul; 52(14):7663-7670. PubMed ID: 29772182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergetic Transformations of Multiple Pollutants Driven by Cr(VI)-Sulfite Reactions.
    Jiang B; Liu Y; Zheng J; Tan M; Wang Z; Wu M
    Environ Sci Technol; 2015 Oct; 49(20):12363-71. PubMed ID: 26384045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient removal of Cr(VI) at alkaline pHs by sulfite/iodide/UV: Mechanism and modeling.
    Cong Y; Shen L; Wang B; Cao J; Pan Z; Wang Z; Wang K; Li Q; Li X
    Water Res; 2022 Aug; 222():118919. PubMed ID: 35933816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remediation of hexavalent chromium in contaminated soil by Fe(II)-Al layered double hydroxide.
    He X; Zhong P; Qiu X
    Chemosphere; 2018 Nov; 210():1157-1166. PubMed ID: 30208541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of hexavalent chromium using biogenic mackinawite (FeS)-deposited kaolinite.
    Li Q; Zhang Y; Liao Y; Huang J; Dang Z; Guo C
    J Colloid Interface Sci; 2020 Jul; 572():236-245. PubMed ID: 32247197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ball milling biochar iron oxide composites for the removal of chromium (Cr(VI)) from water: Performance and mechanisms.
    Zou H; Zhao J; He F; Zhong Z; Huang J; Zheng Y; Zhang Y; Yang Y; Yu F; Bashir MA; Gao B
    J Hazard Mater; 2021 Jul; 413():125252. PubMed ID: 33578092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with alpha-OH.
    Sun J; Mao JD; Gong H; Lan Y
    J Hazard Mater; 2009 Sep; 168(2-3):1569-74. PubMed ID: 19372002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the Oxidation of Organic Cocontaminants during Cr(VI) Reduction by Sulfite: The Overlooked Significance of Cr(V).
    Dong H; Wei G; Cao T; Shao B; Guan X; Strathmann TJ
    Environ Sci Technol; 2020 Jan; 54(2):1157-1166. PubMed ID: 31858777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile modification of activated carbon with highly dispersed nano-sized α-Fe
    Li B; Yin W; Xu M; Tan X; Li P; Gu J; Chiang P; Wu J
    Chemosphere; 2019 Jun; 224():220-227. PubMed ID: 30822728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial reduction of hexavalent chromium under vadose zone conditions.
    Oliver DS; Brockman FJ; Bowman RS; Kieft TL
    J Environ Qual; 2003; 32(1):317-24. PubMed ID: 12549572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cr(OH)3(s) oxidation induced by surface catalyzed Mn(II) oxidation.
    Namgung S; Kwon MJ; Qafoku NP; Lee G
    Environ Sci Technol; 2014 Sep; 48(18):10760-8. PubMed ID: 25144300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remediation and its biological responses to Cd(II)-Cr(VI)-Pb(II) multi-contaminated soil by supported nano zero-valent iron composites.
    Jin Y; Wang Y; Li X; Luo T; Ma Y; Wang B; Liang H
    Sci Total Environ; 2023 Apr; 867():161344. PubMed ID: 36610630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles.
    Gong Y; Gai L; Tang J; Fu J; Wang Q; Zeng EY
    Sci Total Environ; 2017 Oct; 595():743-751. PubMed ID: 28407591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on the dissolution rates of K-Cr(VI)-jarosites: kinetic analysis and implications.
    Reyes IA; Mireles I; Patiño F; Pandiyan T; Flores MU; Palacios EG; Gutiérrez EJ; Reyes M
    Geochem Trans; 2016; 17():3. PubMed ID: 27303211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Reconstruction of Active Catalysis Sites Triggered by Chromium Immobilization for Sulfite Oxidation.
    Qi T; Zhang S; Zhang J; Li T; Xing L; Fang Z; An S; Xu Z; Xiao H; Wang L
    Environ Sci Technol; 2023 Mar; 57(9):3905-3916. PubMed ID: 36812062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced hexavalent chromium removal by activated carbon modified with micro-sized goethite using a facile impregnation method.
    Su M; Fang Y; Li B; Yin W; Gu J; Liang H; Li P; Wu J
    Sci Total Environ; 2019 Jan; 647():47-56. PubMed ID: 30077854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Cr(VI) stabilization in soil by carboxymethyl cellulose-stabilized nanosized Fe
    Su M; Yin W; Liu L; Li P; Fang Z; Fang Y; Chiang P; Wu J
    J Environ Manage; 2020 Mar; 257():109951. PubMed ID: 31868635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.