These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37730478)
1. Probability of Cavitation in a Custom Iron-Based Coupling Medium for Transcranial Magnetic Resonance-Guided Focused Ultrasound Procedures. Edsall C; Fergusson A; Davis RM; Meyer CH; Allen SP; Vlaisavljevich E Ultrasound Med Biol; 2023 Dec; 49(12):2519-2526. PubMed ID: 37730478 [TBL] [Abstract][Full Text] [Related]
2. Novel acoustic coupling bath using magnetite nanoparticles for MR-guided transcranial focused ultrasound surgery. Allen SP; Steeves T; Fergusson A; Moore D; Davis RM; Vlaisialjevich E; Meyer CH Med Phys; 2019 Dec; 46(12):5444-5453. PubMed ID: 31605643 [TBL] [Abstract][Full Text] [Related]
3. Iron-based coupling media for MRI-guided ultrasound surgery. Allen SP; Fergusson A; Edsall C; Chen S; Moore D; Vlaisavljevich E; Davis RM; Meyer CH Med Phys; 2022 Dec; 49(12):7373-7383. PubMed ID: 36156266 [TBL] [Abstract][Full Text] [Related]
5. Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model. Arvanitis CD; Vykhodtseva N; Jolesz F; Livingstone M; McDannold N J Neurosurg; 2016 May; 124(5):1450-9. PubMed ID: 26381252 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Pseudorandom Sonications for Reducing Cavitation With a Clinical Neurosurgery HIFU Device. Lafon C; Moore D; Eames MDC; Snell J; Drainville RA; Padilla F IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1224-1233. PubMed ID: 33166253 [TBL] [Abstract][Full Text] [Related]
7. Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation. Vlaisavljevich E; Xu Z; Maxwell A; Mancia L; Zhang X; Lin KW; Duryea A; Sukovich J; Hall T; Johnsen E; Cain C IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1064-1077. PubMed ID: 28113706 [TBL] [Abstract][Full Text] [Related]
8. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies. Arvanitis CD; McDannold N Med Phys; 2013 Nov; 40(11):112901. PubMed ID: 24320468 [TBL] [Abstract][Full Text] [Related]
9. Acoustic field characterization of a clinical magnetic resonance-guided high-intensity focused ultrasound system inside the magnet bore. Kothapalli SVVN; Altman MB; Partanen A; Wan L; Gach HM; Straube W; Hallahan DE; Chen H Med Phys; 2017 Sep; 44(9):4890-4899. PubMed ID: 28626862 [TBL] [Abstract][Full Text] [Related]
10. A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device. Crake C; Brinker ST; Coviello CM; Livingstone MS; McDannold NJ Phys Med Biol; 2018 Mar; 63(6):065008. PubMed ID: 29459494 [TBL] [Abstract][Full Text] [Related]
11. Nanoparticle-Mediated Acoustic Cavitation Enables High Intensity Focused Ultrasound Ablation Without Tissue Heating. Yildirim A; Shi D; Roy S; Blum NT; Chattaraj R; Cha JN; Goodwin AP ACS Appl Mater Interfaces; 2018 Oct; 10(43):36786-36795. PubMed ID: 30339360 [TBL] [Abstract][Full Text] [Related]
12. Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation. Vlaisavljevich E; Lin KW; Maxwell A; Warnez MT; Mancia L; Singh R; Putnam AJ; Fowlkes B; Johnsen E; Cain C; Xu Z Ultrasound Med Biol; 2015 Jun; 41(6):1651-67. PubMed ID: 25766571 [TBL] [Abstract][Full Text] [Related]
13. Nonthermal ablation of deep brain targets: A simulation study on a large animal model. Top CB; White PJ; McDannold NJ Med Phys; 2016 Feb; 43(2):870-82. PubMed ID: 26843248 [TBL] [Abstract][Full Text] [Related]
15. Monitoring of acoustic cavitation in microbubble-presented focused ultrasound exposure using gradient-echo MRI. Wu CH; Liu HL; Ho CT; Hsu PH; Fan CH; Yeh CK; Kang ST; Chen WS; Wang FN; Peng HH J Magn Reson Imaging; 2020 Jan; 51(1):311-318. PubMed ID: 31125166 [TBL] [Abstract][Full Text] [Related]
16. Passive acoustic mapping of magnetic microbubbles for cavitation enhancement and localization. Crake C; Victor Mde S; Owen J; Coviello C; Collin J; Coussios CC; Stride E Phys Med Biol; 2015 Jan; 60(2):785-806. PubMed ID: 25564961 [TBL] [Abstract][Full Text] [Related]
17. Determination of Acoustic Cavitation Probabilities and Thresholds Using a Single Focusing Transducer to Induce and Detect Acoustic Cavitation Events: I. Method and Terminology. Haller J; Wilkens V; Shaw A Ultrasound Med Biol; 2018 Feb; 44(2):377-396. PubMed ID: 29195754 [TBL] [Abstract][Full Text] [Related]
19. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening. Sun T; Samiotaki G; Wang S; Acosta C; Chen CC; Konofagou EE Phys Med Biol; 2015 Dec; 60(23):9079-94. PubMed ID: 26562661 [TBL] [Abstract][Full Text] [Related]
20. Enhancement and Passive Acoustic Mapping of Cavitation from Fluorescently Tagged Magnetic Resonance-Visible Magnetic Microbubbles In Vivo. Crake C; Owen J; Smart S; Coviello C; Coussios CC; Carlisle R; Stride E Ultrasound Med Biol; 2016 Dec; 42(12):3022-3036. PubMed ID: 27666788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]