These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37730478)

  • 21. Simultaneous Passive Acoustic Mapping and Magnetic Resonance Thermometry for Monitoring of Cavitation-Enhanced Tumor Ablation in Rabbits Using Focused Ultrasound and Phase-Shift Nanoemulsions.
    Crake C; Papademetriou IT; Zhang Y; Vykhodtseva N; McDannold NJ; Porter TM
    Ultrasound Med Biol; 2018 Dec; 44(12):2609-2624. PubMed ID: 30201425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcranial cavitation detection in primates during blood-brain barrier opening--a performance assessment study.
    Wu SY; Tung YS; Marquet F; Downs M; Sanchez C; Chen C; Ferrera V; Konofagou E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):966-78. PubMed ID: 24859660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acoustic Measurements of Nucleus Size Distribution at the Cavitation Threshold.
    Mancia L; Rodriguez M; Sukovich JR; Haskel S; Xu Z; Johnsen E
    Ultrasound Med Biol; 2021 Apr; 47(4):1024-1031. PubMed ID: 33422304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice.
    Tung YS; Vlachos F; Choi JJ; Deffieux T; Selert K; Konofagou EE
    Phys Med Biol; 2010 Oct; 55(20):6141-55. PubMed ID: 20876972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of Acoustic Cavitation Probabilities and Thresholds Using a Single Focusing Transducer to Induce and Detect Acoustic Cavitation Events: II. Systematic Investigation in an Agar Material.
    Haller J; Wilkens V
    Ultrasound Med Biol; 2018 Feb; 44(2):397-415. PubMed ID: 29195755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcranial focused ultrasound-induced blood‒brain barrier opening in mice without shaving hairs.
    Xu L; Gong Y; Chien CY; Leuthardt E; Chen H
    Sci Rep; 2023 Aug; 13(1):13500. PubMed ID: 37598243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of the Acoustic Vaporization Threshold of Lipid-Coated Perfluorobutane Nanodroplets Using Both High-Speed Optical Imaging and Acoustic Methods.
    Wu Q; Mannaris C; May JP; Bau L; Polydorou A; Ferri S; Carugo D; Evans ND; Stride E
    Ultrasound Med Biol; 2021 Jul; 47(7):1826-1843. PubMed ID: 33820668
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic microcavitation: its active and passive acoustic detection.
    Madanshetty SI; Roy RA; Apfel RE
    J Acoust Soc Am; 1991 Sep; 90(3):1515-26. PubMed ID: 1939908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of sub-atmospheric pressure and dissolved oxygen concentration on lesions generated in ex vivo tissues by high intensity focused ultrasound.
    He M; Zhong Z; Zeng D; Gong X; Wang Z; Li F
    Biomed Eng Online; 2021 Sep; 20(1):91. PubMed ID: 34526014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials.
    Maxwell AD; Cain CA; Hall TL; Fowlkes JB; Xu Z
    Ultrasound Med Biol; 2013 Mar; 39(3):449-65. PubMed ID: 23380152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of Acoustic Reflection on the Inertial Cavitation Dose in a Franz Diffusion Cell.
    Robertson J; Becker S
    Ultrasound Med Biol; 2018 May; 44(5):1100-1109. PubMed ID: 29525456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An optical and acoustic investigation of microbubble cavitation in small channels under therapeutic ultrasound conditions.
    Zhao X; Wright A; Goertz DE
    Ultrason Sonochem; 2023 Feb; 93():106291. PubMed ID: 36640460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study of an acoustic technique to detect cavitation produced by a tilting disc valve.
    Herman BA; Porter JM; Carey RF
    J Heart Valve Dis; 1996 Jan; 5(1):90-6. PubMed ID: 8834731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reducing temperature errors in transcranial MR-guided focused ultrasound using a reduced-field-of-view sequence.
    Grissom WA; Allen S
    Magn Reson Med; 2020 Mar; 83(3):1016-1024. PubMed ID: 31483525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of gold nanoparticle size on acoustic cavitation using chemical dosimetry method.
    Shanei A; Shanei MM
    Ultrason Sonochem; 2017 Jan; 34():45-50. PubMed ID: 27773268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Harmonic responses and cavitation activity of encapsulated microbubbles coupled with magnetic nanoparticles.
    Gu Y; Chen C; Tu J; Guo X; Wu H; Zhang D
    Ultrason Sonochem; 2016 Mar; 29():309-16. PubMed ID: 26585011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of elastic modulus and impurities on bubble nuclei available for acoustic cavitation in polyacrylamide hydrogels.
    Rawnaque FS; Simon JC
    J Acoust Soc Am; 2022 Dec; 152(6):3502. PubMed ID: 36586847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoparticle-mediated histotripsy (NMH) using perfluorohexane 'nanocones'.
    Khirallah J; Schmieley R; Demirel E; Rehman TU; Howell J; Durmaz YY; Vlaisavljevich E
    Phys Med Biol; 2019 Jun; 64(12):125018. PubMed ID: 31071701
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GPU-accelerated study of the inertial cavitation threshold in viscoelastic soft tissue using a dual-frequency driving signal.
    Filonets T; Solovchuk M
    Ultrason Sonochem; 2022 Aug; 88():106056. PubMed ID: 35728380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cavitation-based third ventriculostomy using MRI-guided focused ultrasound.
    Alkins R; Huang Y; Pajek D; Hynynen K
    J Neurosurg; 2013 Dec; 119(6):1520-9. PubMed ID: 24074494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.