BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 37730711)

  • 1. Custom tuning of Rieske oxygenase reactivity.
    Tian J; Liu J; Knapp M; Donnan PH; Boggs DG; Bridwell-Rabb J
    Nat Commun; 2023 Sep; 14(1):5858. PubMed ID: 37730711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging a Structural Blueprint to Rationally Engineer the Rieske Oxygenase TsaM.
    Tian J; Garcia AA; Donnan PH; Bridwell-Rabb J
    Biochemistry; 2023 Jun; 62(11):1807-1822. PubMed ID: 37188334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and Biochemical Analysis Reveals a Distinct Catalytic Site of Salicylate 5-Monooxygenase NagGH from Rieske Dioxygenases.
    Hou YJ; Guo Y; Li DF; Zhou NY
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Rieske oxygenase activity one piece at a time.
    Brimberry M; Garcia AA; Liu J; Tian J; Bridwell-Rabb J
    Curr Opin Chem Biol; 2023 Feb; 72():102227. PubMed ID: 36410250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A profile of ring-hydroxylating oxygenases that degrade aromatic pollutants.
    Peng RH; Xiong AS; Xue Y; Fu XY; Gao F; Zhao W; Tian YS; Yao QH
    Rev Environ Contam Toxicol; 2010; 206():65-94. PubMed ID: 20652669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benzoate 1,2-dioxygenase from Pseudomonas putida: single turnover kinetics and regulation of a two-component Rieske dioxygenase.
    Wolfe MD; Altier DJ; Stubna A; Popescu CV; Münck E; Lipscomb JD
    Biochemistry; 2002 Jul; 41(30):9611-26. PubMed ID: 12135383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Apparently Unreactive Substrate Facilitates the Electron Transfer for Dioxygen Activation in Rieske Dioxygenases.
    Csizi KS; Eckert L; Brunken C; Hofstetter TB; Reiher M
    Chemistry; 2022 Mar; 28(16):e202103937. PubMed ID: 35072969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histidine ligand protonation and redox potential in the rieske dioxygenases: role of a conserved aspartate in anthranilate 1,2-dioxygenase.
    Beharry ZM; Eby DM; Coulter ED; Viswanathan R; Neidle EL; Phillips RS; Kurtz DM
    Biochemistry; 2003 Nov; 42(46):13625-36. PubMed ID: 14622009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The NADH recycling enzymes TsaC and TsaD regenerate reducing equivalents for Rieske oxygenase chemistry.
    Tian J; Boggs DG; Donnan PH; Barroso GT; Garcia AA; Dowling DP; Buss JA; Bridwell-Rabb J
    J Biol Chem; 2023 Oct; 299(10):105222. PubMed ID: 37673337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rates of the phthalate dioxygenase reaction with oxygen are dramatically increased by interactions with phthalate and phthalate oxygenase reductase.
    Tarasev M; Rhames F; Ballou DP
    Biochemistry; 2004 Oct; 43(40):12799-808. PubMed ID: 15461452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substitutions of the "bridging" aspartate 178 result in profound changes in the reactivity of the Rieske center of phthalate dioxygenase.
    Pinto A; Tarasev M; Ballou DP
    Biochemistry; 2006 Aug; 45(30):9032-41. PubMed ID: 16866348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design principles for site-selective hydroxylation by a Rieske oxygenase.
    Liu J; Tian J; Perry C; Lukowski AL; Doukov TI; Narayan ARH; Bridwell-Rabb J
    Nat Commun; 2022 Jan; 13(1):255. PubMed ID: 35017498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rieske Oxygenase Catalyzed C-H Bond Functionalization Reactions in Chlorophyll
    Liu J; Knapp M; Jo M; Dill Z; Bridwell-Rabb J
    ACS Cent Sci; 2022 Oct; 8(10):1393-1403. PubMed ID: 36313167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electron-transport proteins of hydroxylating bacterial dioxygenases.
    Mason JR; Cammack R
    Annu Rev Microbiol; 1992; 46():277-305. PubMed ID: 1444257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate-Determining Attack on Substrate Precedes Rieske Cluster Oxidation during Cis-Dihydroxylation by Benzoate Dioxygenase.
    Rivard BS; Rogers MS; Marell DJ; Neibergall MB; Chakrabarty S; Cramer CJ; Lipscomb JD
    Biochemistry; 2015 Aug; 54(30):4652-64. PubMed ID: 26154836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for divergent C-H hydroxylation selectivity in two Rieske oxygenases.
    Lukowski AL; Liu J; Bridwell-Rabb J; Narayan ARH
    Nat Commun; 2020 Jun; 11(1):2991. PubMed ID: 32532989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemistry of the catalytic conversion of phthalate into its cis-dihydrodiol during the reaction of oxygen with the reduced form of phthalate dioxygenase.
    Tarasev M; Ballou DP
    Biochemistry; 2005 Apr; 44(16):6197-207. PubMed ID: 15835907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single turnover chemistry and regulation of O2 activation by the oxygenase component of naphthalene 1,2-dioxygenase.
    Wolfe MD; Parales JV; Gibson DT; Lipscomb JD
    J Biol Chem; 2001 Jan; 276(3):1945-53. PubMed ID: 11056161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The α- and β-Subunit Boundary at the Stem of the Mushroom-Like α
    Tsai PC; Chakraborty J; Suzuki-Minakuchi C; Terada T; Kotake T; Matsuzawa J; Okada K; Nojiri H
    Appl Environ Microbiol; 2022 Aug; 88(15):e0083522. PubMed ID: 35862661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Similar enzymes, different structures: phthalate dioxygenase is an alpha3alpha3 stacked hexamer, not an alpha3beta3 trimer like "normal" Rieske oxygenases.
    Tarasev M; Kaddis CS; Yin S; Loo JA; Burgner J; Ballou DP
    Arch Biochem Biophys; 2007 Oct; 466(1):31-9. PubMed ID: 17764654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.