These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. Multiplexing Superconducting Qubit Circuit for Single Microwave Photon Generation. George RE; Senior J; Saira OP; Pekola JP; de Graaf SE; Lindström T; Pashkin YA J Low Temp Phys; 2017; 189(1):60-75. PubMed ID: 32025044 [TBL] [Abstract][Full Text] [Related]
11. Deterministic entanglement of photons in two superconducting microwave resonators. Wang H; Mariantoni M; Bialczak RC; Lenander M; Lucero E; Neeley M; O'Connell AD; Sank D; Weides M; Wenner J; Yamamoto T; Yin Y; Zhao J; Martinis JM; Cleland AN Phys Rev Lett; 2011 Feb; 106(6):060401. PubMed ID: 21405445 [TBL] [Abstract][Full Text] [Related]
12. Demonstration of Microwave Resonators and Double Quantum Dots on Optimized Reverse-Graded Ge/SiGe Heterostructures. Nigro A; Jutzi E; Oppliger F; De Palma F; Olsen C; Ruiz-Caridad A; Gadea G; Scarlino P; Zardo I; Hofmann A ACS Appl Electron Mater; 2024 Jul; 6(7):5094-5100. PubMed ID: 39070085 [TBL] [Abstract][Full Text] [Related]
13. Decoherence in josephson phase qubits from junction resonators. Simmonds RW; Lang KM; Hite DA; Nam S; Pappas DP; Martinis JM Phys Rev Lett; 2004 Aug; 93(7):077003. PubMed ID: 15324267 [TBL] [Abstract][Full Text] [Related]
14. Two-Dimensional Material Tunnel Barrier for Josephson Junctions and Superconducting Qubits. Lee KH; Chakram S; Kim SE; Mujid F; Ray A; Gao H; Park C; Zhong Y; Muller DA; Schuster DI; Park J Nano Lett; 2019 Nov; 19(11):8287-8293. PubMed ID: 31661615 [TBL] [Abstract][Full Text] [Related]
15. π phase shifter based on NbN-based ferromagnetic Josephson junction on a silicon substrate. Yamashita T; Kim S; Kato H; Qiu W; Semba K; Fujimaki A; Terai H Sci Rep; 2020 Aug; 10(1):13687. PubMed ID: 32792626 [TBL] [Abstract][Full Text] [Related]
16. Integration of Topological Insulator Josephson Junctions in Superconducting Qubit Circuits. Schmitt TW; Connolly MR; Schleenvoigt M; Liu C; Kennedy O; Chávez-Garcia JM; Jalil AR; Bennemann B; Trellenkamp S; Lentz F; Neumann E; Lindström T; de Graaf SE; Berenschot E; Tas N; Mussler G; Petersson KD; Grützmacher D; Schüffelgen P Nano Lett; 2022 Apr; 22(7):2595-2602. PubMed ID: 35235321 [TBL] [Abstract][Full Text] [Related]
18. Superconducting micro-resonators for electron spin resonance - the good, the bad, and the future. Artzi Y; Yishay Y; Fanciulli M; Jbara M; Blank A J Magn Reson; 2022 Jan; 334():107102. PubMed ID: 34847488 [TBL] [Abstract][Full Text] [Related]
19. Strong coupling between a photon and a hole spin in silicon. Yu CX; Zihlmann S; Abadillo-Uriel JC; Michal VP; Rambal N; Niebojewski H; Bedecarrats T; Vinet M; Dumur É; Filippone M; Bertrand B; De Franceschi S; Niquet YM; Maurand R Nat Nanotechnol; 2023 Jul; 18(7):741-746. PubMed ID: 36879125 [TBL] [Abstract][Full Text] [Related]
20. Advanced CMOS manufacturing of superconducting qubits on 300 mm wafers. Van Damme J; Massar S; Acharya R; Ivanov T; Perez Lozano D; Canvel Y; Demarets M; Vangoidsenhoven D; Hermans Y; Lai JG; Vadiraj AM; Mongillo M; Wan D; De Boeck J; Potočnik A; De Greve K Nature; 2024 Oct; 634(8032):74-79. PubMed ID: 39294381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]