These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37730848)

  • 1. High-Q trenched aluminum coplanar resonators with an ultrasonic edge microcutting for superconducting quantum devices.
    Zikiy EV; Ivanov AI; Smirnov NS; Moskalev DO; Polozov VI; Matanin AR; Malevannaya EI; Echeistov VV; Konstantinova TG; Rodionov IA
    Sci Rep; 2023 Sep; 13(1):15536. PubMed ID: 37730848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of device geometry and material properties on dielectric losses in superconducting coplanar-waveguide resonators.
    Lahtinen V; Möttönen M
    J Phys Condens Matter; 2020 Jul; 32(40):. PubMed ID: 32485694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Passivation of Niobium Superconducting Quantum Circuits Using Self-Assembled Monolayers.
    Alghadeer M; Banerjee A; Hajr A; Hussein H; Fariborzi H; Rao SG
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2319-2328. PubMed ID: 36573579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss Mechanisms and Quasiparticle Dynamics in Superconducting Microwave Resonators Made of Thin-Film Granular Aluminum.
    Grünhaupt L; Maleeva N; Skacel ST; Calvo M; Levy-Bertrand F; Ustinov AV; Rotzinger H; Monfardini A; Catelani G; Pop IM
    Phys Rev Lett; 2018 Sep; 121(11):117001. PubMed ID: 30265102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Characterization of Superconducting Resonators.
    Cataldo G; Barrentine EM; Brown AD; Moseley SH; U-Yen K; Wollack EJ
    J Vis Exp; 2016 May; (111):. PubMed ID: 27284966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Octave-Tunable Magnetostatic Wave YIG Resonators on a Chip.
    Dai S; Bhave SA; Wang R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Nov; 67(11):2454-2460. PubMed ID: 32746177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superconducting coplanar waveguide resonators for low temperature pulsed electron spin resonance spectroscopy.
    Malissa H; Schuster DI; Tyryshkin AM; Houck AA; Lyon SA
    Rev Sci Instrum; 2013 Feb; 84(2):025116. PubMed ID: 23464260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of superconducting resonators: Motional narrowing and the role of Landau-Zener driving of two-level defects.
    Niepce D; Burnett JJ; Kudra M; Cole JH; Bylander J
    Sci Adv; 2021 Sep; 7(39):eabh0462. PubMed ID: 34559556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials loss measurements using superconducting microwave resonators.
    McRae CRH; Wang H; Gao J; Vissers MR; Brecht T; Dunsworth A; Pappas DP; Mutus J
    Rev Sci Instrum; 2020 Sep; 91(9):091101. PubMed ID: 33003823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexing Superconducting Qubit Circuit for Single Microwave Photon Generation.
    George RE; Senior J; Saira OP; Pekola JP; de Graaf SE; Lindström T; Pashkin YA
    J Low Temp Phys; 2017; 189(1):60-75. PubMed ID: 32025044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deterministic entanglement of photons in two superconducting microwave resonators.
    Wang H; Mariantoni M; Bialczak RC; Lenander M; Lucero E; Neeley M; O'Connell AD; Sank D; Weides M; Wenner J; Yamamoto T; Yin Y; Zhao J; Martinis JM; Cleland AN
    Phys Rev Lett; 2011 Feb; 106(6):060401. PubMed ID: 21405445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of Microwave Resonators and Double Quantum Dots on Optimized Reverse-Graded Ge/SiGe Heterostructures.
    Nigro A; Jutzi E; Oppliger F; De Palma F; Olsen C; Ruiz-Caridad A; Gadea G; Scarlino P; Zardo I; Hofmann A
    ACS Appl Electron Mater; 2024 Jul; 6(7):5094-5100. PubMed ID: 39070085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoherence in josephson phase qubits from junction resonators.
    Simmonds RW; Lang KM; Hite DA; Nam S; Pappas DP; Martinis JM
    Phys Rev Lett; 2004 Aug; 93(7):077003. PubMed ID: 15324267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Dimensional Material Tunnel Barrier for Josephson Junctions and Superconducting Qubits.
    Lee KH; Chakram S; Kim SE; Mujid F; Ray A; Gao H; Park C; Zhong Y; Muller DA; Schuster DI; Park J
    Nano Lett; 2019 Nov; 19(11):8287-8293. PubMed ID: 31661615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. π phase shifter based on NbN-based ferromagnetic Josephson junction on a silicon substrate.
    Yamashita T; Kim S; Kato H; Qiu W; Semba K; Fujimaki A; Terai H
    Sci Rep; 2020 Aug; 10(1):13687. PubMed ID: 32792626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of Topological Insulator Josephson Junctions in Superconducting Qubit Circuits.
    Schmitt TW; Connolly MR; Schleenvoigt M; Liu C; Kennedy O; Chávez-Garcia JM; Jalil AR; Bennemann B; Trellenkamp S; Lentz F; Neumann E; Lindström T; de Graaf SE; Berenschot E; Tas N; Mussler G; Petersson KD; Grützmacher D; Schüffelgen P
    Nano Lett; 2022 Apr; 22(7):2595-2602. PubMed ID: 35235321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making high-quality quantum microwave devices with van der Waals superconductors.
    Antony A; Gustafsson MV; Rajendran A; Benyamini A; Ribeill G; Ohki TA; Hone J; Fong KC
    J Phys Condens Matter; 2021 Dec; 34(10):. PubMed ID: 34847535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superconducting micro-resonators for electron spin resonance - the good, the bad, and the future.
    Artzi Y; Yishay Y; Fanciulli M; Jbara M; Blank A
    J Magn Reson; 2022 Jan; 334():107102. PubMed ID: 34847488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong coupling between a photon and a hole spin in silicon.
    Yu CX; Zihlmann S; Abadillo-Uriel JC; Michal VP; Rambal N; Niebojewski H; Bedecarrats T; Vinet M; Dumur É; Filippone M; Bertrand B; De Franceschi S; Niquet YM; Maurand R
    Nat Nanotechnol; 2023 Jul; 18(7):741-746. PubMed ID: 36879125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced CMOS manufacturing of superconducting qubits on 300 mm wafers.
    Van Damme J; Massar S; Acharya R; Ivanov T; Perez Lozano D; Canvel Y; Demarets M; Vangoidsenhoven D; Hermans Y; Lai JG; Vadiraj AM; Mongillo M; Wan D; De Boeck J; Potočnik A; De Greve K
    Nature; 2024 Oct; 634(8032):74-79. PubMed ID: 39294381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.