BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37730862)

  • 1. Engineering of nickel, cobalt oxides and nickel/cobalt binary oxides by electrodeposition and application as binder free electrodes in supercapacitors.
    Abbas Q; Khurshid H; Yoosuf R; Lawrence J; Issa BA; Abdelkareem MA; Olabi AG
    Sci Rep; 2023 Sep; 13(1):15654. PubMed ID: 37730862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of a High-Energy Flexible All-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti
    Patil AM; Kitiphatpiboon N; An X; Hao X; Li S; Hao X; Abudula A; Guan G
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52749-52762. PubMed ID: 33185100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid cobalt-manganese oxides prepared by ordered steps with a ternary nanosheet structure and its high performance as a binder-free electrode for energy storage.
    Lu Q; Zhou S; Chen M; Li B; Wei H; Zi B; Zhang Y; Zhang J; Liu Q
    Nanoscale; 2021 Jan; 13(4):2573-2584. PubMed ID: 33480939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-long cycle life and binder-free manganese-cobalt oxide supercapacitor electrodes through photonic nanostructuring.
    Gaire M; Subedi B; Adireddy S; Chrisey D
    RSC Adv; 2020 Nov; 10(66):40234-40243. PubMed ID: 35520879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam.
    Jiang S; Shi T; Long H; Sun Y; Zhou W; Tang Z
    Nanoscale Res Lett; 2014; 9(1):492. PubMed ID: 25258611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyindole Embedded Nickel/Zinc Oxide Nanocomposites for High-Performance Energy Storage Applications.
    Humayun H; Begum B; Bilal S; Shah AUHA; Röse P
    Nanomaterials (Basel); 2023 Feb; 13(3):. PubMed ID: 36770578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor.
    Rusi ; Chan PY; Majid SR
    PLoS One; 2015; 10(7):e0129780. PubMed ID: 26158447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green and facile synthesis of nickel oxide-porous carbon composite as improved electrochemical electrodes for supercapacitor application from banana peel waste.
    Al Kiey SA; Hasanin MS
    Environ Sci Pollut Res Int; 2021 Dec; 28(47):66888-66900. PubMed ID: 34240303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of NF/ZnOx and NF/CoOx nanostructures for high performance supercapacitor electrode materials.
    Kumar YA; Reddy AE; Bak JS; Cho IH; Kim HJ
    RSC Adv; 2019 Jul; 9(37):21225-21232. PubMed ID: 35521331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile preparation of nickel/carbonized wood nanocomposite for environmentally friendly supercapacitor electrodes.
    Yaddanapudi HS; Tian K; Teng S; Tiwari A
    Sci Rep; 2016 Sep; 6():33659. PubMed ID: 27651005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrodeposition of porous graphene networks on nickel foams as supercapacitor electrodes with high capacitance and remarkable cyclic stability.
    Yang S; Deng B; Ge R; Zhang L; Wang H; Zhang Z; Zhu W; Wang G
    Nanoscale Res Lett; 2014 Dec; 9(1):2496. PubMed ID: 26089003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of Cobalt Oxide-Reduced Graphitic Oxide Supercapacitor Electrode by Photothermal Processing.
    Gaire M; Khatoon N; Chrisey D
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33809160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cobalt-Nickel Layered Double Hydroxides on Electrospun MXene for Superior Asymmetric Supercapacitor Electrodes.
    Jiang H; Cheng J; He J; Pu C; Huang X; Chen Y; Lu X; Lu Y; Zhang D; Wang Z; Leng Y; Chu PK; Luo Y
    ACS Omega; 2023 Dec; 8(51):49017-49026. PubMed ID: 38162737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Efficient Electrocatalysts for Electrochemical Water Oxidation Using Bimetallic Oxides System.
    Ali A; Najaf D; Nazir A; Haider A; Iqbal M; Alwadai N; Kausar A; Ahmad A
    ACS Omega; 2023 Mar; 8(10):9539-9546. PubMed ID: 36936294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MOF-deviated zinc-nickel-cobalt ZIF-67 electrode material for high-performance symmetrical coin-shaped supercapacitors.
    Raphael Ezeigwe E; Dong L; Wang J; Wang L; Yan W; Zhang J
    J Colloid Interface Sci; 2020 Aug; 574():140-151. PubMed ID: 32311536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Traditional salt-in-water electrolyte
    Sundaram MM; Appadoo D
    Dalton Trans; 2020 Aug; 49(33):11743-11755. PubMed ID: 32797136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrodeposition Synthesis of Coral-like MnCo Selenide Binder-Free Electrodes for Aqueous Asymmetric Supercapacitors.
    Shao S; Liu S; Xue C
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchically porous nickel oxide nanosheets grown on nickel foam prepared by one-step in situ anodization for high-performance supercapacitors.
    Yang L; Qian L; Tian X; Li J; Dai J; Guo Y; Xiao D
    Chem Asian J; 2014 Jun; 9(6):1579-85. PubMed ID: 24771534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomass-Derived Nitrogen-Doped Carbon Nanofiber Network: A Facile Template for Decoration of Ultrathin Nickel-Cobalt Layered Double Hydroxide Nanosheets as High-Performance Asymmetric Supercapacitor Electrode.
    Lai F; Miao YE; Zuo L; Lu H; Huang Y; Liu T
    Small; 2016 Jun; 12(24):3235-44. PubMed ID: 27135301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial cellulose-based sheet-like carbon aerogels for the in situ growth of nickel sulfide as high performance electrode materials for asymmetric supercapacitors.
    Zuo L; Fan W; Zhang Y; Huang Y; Gao W; Liu T
    Nanoscale; 2017 Mar; 9(13):4445-4455. PubMed ID: 28304051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.