These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37730905)

  • 1. All silicon MIR super absorber using fractal metasurfaces.
    Ali AM; Ghanim AM; Othman M; Swillam MA
    Sci Rep; 2023 Sep; 13(1):15545. PubMed ID: 37730905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicon based mid-IR super absorber using hyperbolic metamaterial.
    Desouky M; Mahmoud AM; Swillam MA
    Sci Rep; 2018 Feb; 8(1):2036. PubMed ID: 29391401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-Narrow Band Mid-Infrared Perfect Absorber Based on Hybrid Dielectric Metasurface.
    Chen S; Chen Z; Liu J; Cheng J; Zhou Y; Xiao L; Chen K
    Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31547054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband MIR harvester using silicon nanostructures.
    Magdi S; El-Diwany F; A Swillam M
    Sci Rep; 2019 Apr; 9(1):5829. PubMed ID: 30967574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Ultra-Wideband THz/IR Metamaterial Absorber Based on Doped Silicon.
    Liu H; Luo K; Tang S; Peng D; Hu F; Tu L
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30572632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface.
    Kim J; Choudhury S; DeVault C; Zhao Y; Kildishev AV; Shalaev VM; Alù A; Boltasseva A
    ACS Nano; 2016 Oct; 10(10):9326-9333. PubMed ID: 27704773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-area long-wave infrared broadband all-dielectric metasurface absorber based on markless laser direct writing lithography.
    Chen C; Liu Y; Jiang ZY; Shen C; Zhang Y; Zhong F; Chen L; Zhu S; Liu H
    Opt Express; 2022 Apr; 30(8):13391-13403. PubMed ID: 35472952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wafer-scale ultra-broadband perfect absorber based on ultrathin Al-SiO
    Li H; Zhang C; Liu XC; Yu P; Chen WD; Xie ZW; Tang MJ; Zheng J; Li L
    Opt Express; 2022 Aug; 30(17):30911-30917. PubMed ID: 36242186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Designed Broadband Absorber Based on ENZ Mode Incorporating Plasmonic Metasurfaces.
    Dang PT; Le KQ; Lee JH; Nguyen TK
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31590301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-Broadband Solar Absorber and High-Efficiency Thermal Emitter from UV to Mid-Infrared Spectrum.
    Wu F; Shi P; Yi Z; Li H; Yi Y
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Different Metals on the Performance of Slab Tamm Plasmon Resonators.
    Pühringer G; Consani C; Jakoby B
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wafer-Scale Functional Metasurfaces for Mid-Infrared Photonics and Biosensing.
    Leitis A; Tseng ML; John-Herpin A; Kivshar YS; Altug H
    Adv Mater; 2021 Oct; 33(43):e2102232. PubMed ID: 34494318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion.
    Wu D; Liu C; Liu Y; Xu Z; Yu Z; Yu L; Chen L; Ma R; Zhang J; Ye H
    RSC Adv; 2018 Jun; 8(38):21054-21064. PubMed ID: 35539953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-area mid-infrared broadband absorbers based on spiral ITO resulting from the combination of two different broadening absorption methods.
    Cao BW; Li C; Shi WJ; Han CQ; Wu Y; Yan CC
    Opt Express; 2021 Oct; 29(21):34427-34440. PubMed ID: 34809233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-temperature differences in plasmonic broadband absorber on PET and Si substrates.
    Kim JH; Lee SG; Kim TT; Ha T; Lee SH; Kim JH; Lee YH
    Sci Rep; 2020 Aug; 10(1):13279. PubMed ID: 32764675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mid- and far-infrared localized surface plasmon resonances in chalcogen-hyperdoped silicon.
    Wang M; Yu Y; Prucnal S; Berencén Y; Shaikh MS; Rebohle L; Khan MB; Zviagin V; Hübner R; Pashkin A; Erbe A; Georgiev YM; Grundmann M; Helm M; Kirchner R; Zhou S
    Nanoscale; 2022 Feb; 14(7):2826-2836. PubMed ID: 35133384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-sided and omnidirectional absorption of visible light in tapered dielectric nanostructure coated with non-noble metal.
    Shen S; Tang J; Yu J; Zhou L; Zhou Y
    Opt Express; 2019 Sep; 27(18):24989-24999. PubMed ID: 31510379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-Wideband and Wide-Angle Perfect Solar Energy Absorber Based on Titanium and Silicon Dioxide Colloidal Nanoarray Structure.
    Wu P; Wei K; Xu D; Chen M; Zeng Y; Jian R
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Absorption with Graphene-Coated Silicon Carbide Nanowires for Mid-Infrared Nanophotonics.
    Rufangura P; Khodasevych I; Agrawal A; Bosi M; Folland TG; Caldwell JD; Iacopi F
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. THz time-domain spectroscopy modulated with semiconductor plasmonic perfect absorbers.
    Gonzalez-Posada F; Coquillat D; Najem M; Cerutti L; Taliercio T
    Opt Express; 2023 Sep; 31(20):32152-32161. PubMed ID: 37859024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.