These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 37731984)

  • 1. Coordination of carbon assimilation, allocation, and utilization for systemic improvement of cereal yield.
    Liang XG; Gao Z; Fu XX; Chen XM; Shen S; Zhou SL
    Front Plant Sci; 2023; 14():1206829. PubMed ID: 37731984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Source/sink interactions underpin crop yield: the case for trehalose 6-phosphate/SnRK1 in improvement of wheat.
    Lawlor DW; Paul MJ
    Front Plant Sci; 2014; 5():418. PubMed ID: 25202319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security.
    Braun DM; Wang L; Ruan YL
    J Exp Bot; 2014 Apr; 65(7):1713-35. PubMed ID: 24347463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sucrose Utilization for Improved Crop Yields: A Review Article.
    Aluko OO; Li C; Wang Q; Liu H
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trehalose 6-phosphate signalling and impact on crop yield.
    Paul MJ; Watson A; Griffiths CA
    Biochem Soc Trans; 2020 Oct; 48(5):2127-2137. PubMed ID: 33005918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing crop yield and resilience with trehalose 6-phosphate: targeting a feast-famine mechanism in cereals for better source-sink optimization.
    Paul MJ; Oszvald M; Jesus C; Rajulu C; Griffiths CA
    J Exp Bot; 2017 Jul; 68(16):4455-4462. PubMed ID: 28981769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systemic Signaling: A Role in Propelling Crop Yield.
    Chen J; Ham BK
    Plants (Basel); 2022 May; 11(11):. PubMed ID: 35684173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing Long-Distance Carbon Partitioning from Photosynthetic Source Leaves to Heterotrophic Sink Organs with Photoassimilated [
    Yadav UP; Shaikh MA; Evers J; Regmi KC; Gaxiola RA; Ayre BG
    Methods Mol Biol; 2019; 2014():223-233. PubMed ID: 31197800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sucrose homeostasis: Mechanisms and opportunity in crop yield improvement.
    Miret JA; Griffiths CA; Paul MJ
    J Plant Physiol; 2024 Mar; 294():154188. PubMed ID: 38295650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential ear growth of two maize varieties to shading in the field environment: Effects on whole plant carbon allocation and sugar starvation response.
    Liang XG; Gao Z; Shen S; Paul MJ; Zhang L; Zhao X; Lin S; Wu G; Chen XM; Zhou SL
    J Plant Physiol; 2020 Aug; 251():153194. PubMed ID: 32563766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar sensing in C4 source leaves: a gap that needs to be filled.
    Chen L; Ghannoum O; Furbank RT
    J Exp Bot; 2024 Jul; 75(13):3818-3834. PubMed ID: 38642398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of sugar transporters to crop yield and fruit quality.
    Wen S; Neuhaus HE; Cheng J; Bie Z
    J Exp Bot; 2022 Apr; 73(8):2275-2289. PubMed ID: 35139196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What are the regulatory targets for intervention in assimilate partitioning to improve crop yield and resilience?
    Paul MJ
    J Plant Physiol; 2021 Nov; 266():153537. PubMed ID: 34619557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Source-To-Sink Transport of Sugar and Its Role in Male Reproductive Development.
    Li J; Kim YJ; Zhang D
    Genes (Basel); 2022 Jul; 13(8):. PubMed ID: 35893060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing the sink/source ratio of on-date palm plants during fruit growth has physiological and biochemical impacts on the shift in source-sink limitations.
    Alikhani-Koupaei M; Ehtesham Nia A
    J Sci Food Agric; 2023 Nov; 103(14):7104-7116. PubMed ID: 37332084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The OsNAC23-Tre6P-SnRK1a feed-forward loop regulates sugar homeostasis and grain yield in rice.
    Li Z; Wei X; Tong X; Zhao J; Liu X; Wang H; Tang L; Shu Y; Li G; Wang Y; Ying J; Jiao G; Hu H; Hu P; Zhang J
    Mol Plant; 2022 Apr; 15(4):706-722. PubMed ID: 35093592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate-smart crops with enhanced photosynthesis.
    Jansson C; Vogel J; Hazen S; Brutnell T; Mockler T
    J Exp Bot; 2018 Jul; 69(16):3801-3809. PubMed ID: 30032188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of global dimming on crop yields is determined by the source-sink imbalance of carbon during grain filling.
    Shao L; Liu Z; Li H; Zhang Y; Dong M; Guo X; Zhang H; Huang B; Ni R; Li G; Cai C; Chen W; Luo W; Yin X
    Glob Chang Biol; 2021 Feb; 27(3):689-708. PubMed ID: 33216414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking fundamental science to crop improvement through understanding source and sink traits and their integration for yield enhancement.
    Paul MJ; Watson A; Griffiths CA
    J Exp Bot; 2020 Apr; 71(7):2270-2280. PubMed ID: 31665486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved resource allocation and stabilization of yield under abiotic stress.
    Keller I; Rodrigues CM; Neuhaus HE; Pommerrenig B
    J Plant Physiol; 2021 Feb; 257():153336. PubMed ID: 33360492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.