These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 37732237)

  • 41. Semi-TMS: an efficient regularization-oriented triple-teacher semi-supervised medical image segmentation model.
    Chen W; Zhou S; Liu X; Chen Y
    Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37699409
    [No Abstract]   [Full Text] [Related]  

  • 42. How Well Do Self-Supervised Models Transfer to Medical Imaging?
    Anton J; Castelli L; Chan MF; Outters M; Tang WH; Cheung V; Shukla P; Walambe R; Kotecha K
    J Imaging; 2022 Dec; 8(12):. PubMed ID: 36547485
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Context encoder transfer learning approaches for retinal image analysis.
    Morís DI; Hervella ÁS; Rouco J; Novo J; Ortega M
    Comput Biol Med; 2023 Jan; 152():106451. PubMed ID: 36571941
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transfer learning for data-efficient abdominal muscle segmentation with convolutional neural networks.
    McSweeney DM; Henderson EG; van Herk M; Weaver J; Bromiley PA; Green A; McWilliam A
    Med Phys; 2022 May; 49(5):3107-3120. PubMed ID: 35170063
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Systematic Benchmarking Analysis of Transfer Learning for Medical Image Analysis.
    Hosseinzadeh Taher MR; Haghighi F; Feng R; Gotway MB; Liang J
    Domain Adapt Represent Transf Afford Healthc AI Resour Divers Glob Health (2021); 2021; 12968():3-13. PubMed ID: 35713581
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep learning for AI-based diagnosis of skin-related neglected tropical diseases: a pilot study.
    Yotsu R; Ding Z; Hamm J; Blanton R
    medRxiv; 2023 Mar; ():. PubMed ID: 36993502
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Contrastive self-supervised learning for diabetic retinopathy early detection.
    Ouyang J; Mao D; Guo Z; Liu S; Xu D; Wang W
    Med Biol Eng Comput; 2023 Sep; 61(9):2441-2452. PubMed ID: 37119374
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dealing with distribution mismatch in semi-supervised deep learning for COVID-19 detection using chest X-ray images: A novel approach using feature densities.
    Calderon-Ramirez S; Yang S; Elizondo D; Moemeni A
    Appl Soft Comput; 2022 Jul; 123():108983. PubMed ID: 35573166
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intentional deep overfit learning (IDOL): A novel deep learning strategy for adaptive radiation therapy.
    Chun J; Park JC; Olberg S; Zhang Y; Nguyen D; Wang J; Kim JS; Jiang S
    Med Phys; 2022 Jan; 49(1):488-496. PubMed ID: 34791672
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Learning image features with fewer labels using a semi-supervised deep convolutional network.
    Dos Santos FP; Zor C; Kittler J; Ponti MA
    Neural Netw; 2020 Dec; 132():131-143. PubMed ID: 32871338
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detection of masses in mammograms using a one-stage object detector based on a deep convolutional neural network.
    Jung H; Kim B; Lee I; Yoo M; Lee J; Ham S; Woo O; Kang J
    PLoS One; 2018; 13(9):e0203355. PubMed ID: 30226841
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Applying Self-Supervised Representation Learning for Emotion Recognition Using Physiological Signals.
    Montero Quispe KG; Utyiama DMS; Dos Santos EM; Oliveira HABF; Souto EJP
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501803
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dissecting self-supervised learning methods for surgical computer vision.
    Ramesh S; Srivastav V; Alapatt D; Yu T; Murali A; Sestini L; Nwoye CI; Hamoud I; Sharma S; Fleurentin A; Exarchakis G; Karargyris A; Padoy N
    Med Image Anal; 2023 Aug; 88():102844. PubMed ID: 37270898
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Self-Path: Self-Supervision for Classification of Pathology Images With Limited Annotations.
    Koohbanani NA; Unnikrishnan B; Khurram SA; Krishnaswamy P; Rajpoot N
    IEEE Trans Med Imaging; 2021 Oct; 40(10):2845-2856. PubMed ID: 33523807
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Benchmarking Self-Supervised Contrastive Learning Methods for Image-Based Plant Phenotyping.
    Ogidi FC; Eramian MG; Stavness I
    Plant Phenomics; 2023; 5():0037. PubMed ID: 37040288
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Towards annotation-efficient segmentation via image-to-image translation.
    Vorontsov E; Molchanov P; Gazda M; Beckham C; Kautz J; Kadoury S
    Med Image Anal; 2022 Nov; 82():102624. PubMed ID: 36208571
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hebbian semi-supervised learning in a sample efficiency setting.
    Lagani G; Falchi F; Gennaro C; Amato G
    Neural Netw; 2021 Nov; 143():719-731. PubMed ID: 34438195
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Guitar Chord Sensing and Recognition Using Multi-Task Learning and Physical Data Augmentation with Robotics.
    Byambatsogt G; Choimaa L; Koutaki G
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114599
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automatic task recognition in a flexible endoscopy benchtop trainer with semi-supervised learning.
    Bencteux V; Saibro G; Shlomovitz E; Mascagni P; Perretta S; Hostettler A; Marescaux J; Collins T
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1585-1595. PubMed ID: 32592068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.