These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 37732308)
21. Memristor-based biomimetic compound eye for real-time collision detection. Wang Y; Gong Y; Huang S; Xing X; Lv Z; Wang J; Yang JQ; Zhang G; Zhou Y; Han ST Nat Commun; 2021 Oct; 12(1):5979. PubMed ID: 34645801 [TBL] [Abstract][Full Text] [Related]
22. Binocular Neuronal Processing of Object Motion in an Arthropod. Scarano F; Sztarker J; Medan V; Berón de Astrada M; Tomsic D J Neurosci; 2018 Aug; 38(31):6933-6948. PubMed ID: 30012687 [TBL] [Abstract][Full Text] [Related]
23. Two identified looming detectors in the locust: ubiquitous lateral connections among their inputs contribute to selective responses to looming objects. Rind FC; Wernitznig S; Pölt P; Zankel A; Gütl D; Sztarker J; Leitinger G Sci Rep; 2016 Oct; 6():35525. PubMed ID: 27774991 [TBL] [Abstract][Full Text] [Related]
24. Enhancing LGMD's Looming Selectivity for UAV With Spatial-Temporal Distributed Presynaptic Connections. Zhao J; Wang H; Bellotto N; Hu C; Peng J; Yue S IEEE Trans Neural Netw Learn Syst; 2023 May; 34(5):2539-2553. PubMed ID: 34495845 [TBL] [Abstract][Full Text] [Related]
25. Non-linear neuronal responses as an emergent property of afferent networks: a case study of the locust lobula giant movement detector. Bermúdez i Badia S; Bernardet U; Verschure PF PLoS Comput Biol; 2010 Mar; 6(3):e1000701. PubMed ID: 20300653 [TBL] [Abstract][Full Text] [Related]
26. Self-supervised learning of the biologically-inspired obstacle avoidance of hexapod walking robot. Čížek P; Faigl J Bioinspir Biomim; 2019 May; 14(4):046002. PubMed ID: 30995613 [TBL] [Abstract][Full Text] [Related]
27. Using a mobile robot to study locust collision avoidance responses. Blanchard M; Verschure PF; Rind FC Int J Neural Syst; 1999 Oct; 9(5):405-10. PubMed ID: 10630469 [TBL] [Abstract][Full Text] [Related]
28. A model of how depth facilitates scene-relative object motion perception. Layton OW; Niehorster DC PLoS Comput Biol; 2019 Nov; 15(11):e1007397. PubMed ID: 31725723 [TBL] [Abstract][Full Text] [Related]
29. Fine and distributed subcellular retinotopy of excitatory inputs to the dendritic tree of a collision-detecting neuron. Zhu Y; Gabbiani F J Neurophysiol; 2016 Jun; 115(6):3101-12. PubMed ID: 27009157 [TBL] [Abstract][Full Text] [Related]
30. Re-framing bio-plausible collision detection: identifying shared meta-properties through strategic prototyping. Wu H; Yue S; Hu C Front Neurorobot; 2024; 18():1349498. PubMed ID: 38333372 [TBL] [Abstract][Full Text] [Related]
31. Local circuit for the computation of object approach by an identified visual neuron in the locust. Rind FC; Simmons PJ J Comp Neurol; 1998 Jun; 395(3):405-15. PubMed ID: 9596531 [TBL] [Abstract][Full Text] [Related]
32. Response properties and receptive field organization of collision-sensitive neurons in the optic tectum of bullfrog, Rana catesbeiana. Kang HJ; Li XH Neurosci Bull; 2010 Aug; 26(4):304-16. PubMed ID: 20651812 [TBL] [Abstract][Full Text] [Related]
33. Robustness of Bio-Inspired Visual Systems for Collision Prediction in Critical Robot Traffic. Fu Q; Sun X; Liu T; Hu C; Yue S Front Robot AI; 2021; 8():529872. PubMed ID: 34422912 [TBL] [Abstract][Full Text] [Related]
34. Looming detection by identified visual interneurons during larval development of the locust Locusta migratoria. Simmons PJ; Sztarker J; Rind FC J Exp Biol; 2013 Jun; 216(Pt 12):2266-75. PubMed ID: 23531812 [TBL] [Abstract][Full Text] [Related]
35. Responses of a looming-sensitive neuron to compound and paired object approaches. Guest BB; Gray JR J Neurophysiol; 2006 Mar; 95(3):1428-41. PubMed ID: 16319198 [TBL] [Abstract][Full Text] [Related]
36. Spatial distribution of inputs and local receptive field properties of a wide-field, looming sensitive neuron. Krapp HG; Gabbiani F J Neurophysiol; 2005 Apr; 93(4):2240-53. PubMed ID: 15548622 [TBL] [Abstract][Full Text] [Related]
37. Invariance of angular threshold computation in a wide-field looming-sensitive neuron. Gabbiani F; Mo C; Laurent G J Neurosci; 2001 Jan; 21(1):314-29. PubMed ID: 11150349 [TBL] [Abstract][Full Text] [Related]
38. Weighted combination of size and disparity: a computational model for timing a ball catch. Rushton SK; Wann JP Nat Neurosci; 1999 Feb; 2(2):186-90. PubMed ID: 10195204 [TBL] [Abstract][Full Text] [Related]
39. Logarithmic compression of sensory signals within the dendritic tree of a collision-sensitive neuron. Jones PW; Gabbiani F J Neurosci; 2012 Apr; 32(14):4923-34. PubMed ID: 22492048 [TBL] [Abstract][Full Text] [Related]
40. Background visual motion affects responses of an insect motion-sensitive neuron to objects deviating from a collision course. Yakubowski JM; McMillan GA; Gray JR Physiol Rep; 2016 May; 4(10):. PubMed ID: 27207786 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]