BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37733138)

  • 1. Peripheral fatigue regulation during knee extensor exercise in type 1 diabetes and consequences on the force-duration relationship.
    Fekih N; Zghal F; Machfer A; Ben Hadj Hassen H; Zarizissi S; Bouzid MA
    Eur J Appl Physiol; 2024 Mar; 124(3):897-908. PubMed ID: 37733138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centrally-mediated regulation of peripheral fatigue during knee extensor exercise and consequences on the force-duration relationship in older men.
    Zarzissi S; Zghal F; Bouzid MA; Hureau TJ; Sahli S; Ben Hassen H; Rebai H
    Eur J Sport Sci; 2020 Jun; 20(5):641-649. PubMed ID: 31397211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aging reduces the maximal level of peripheral fatigue tolerable and impairs exercise capacity.
    Zarzissi S; Bouzid MA; Zghal F; Rebai H; Hureau TJ
    Am J Physiol Regul Integr Comp Physiol; 2020 Dec; 319(6):R617-R625. PubMed ID: 32966120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between neuromuscular fatigue, muscle activation and the work done above the critical power during severe-intensity exercise.
    Ducrocq GP; Blain GM
    Exp Physiol; 2022 Apr; 107(4):312-325. PubMed ID: 35137992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exacerbated central fatigue and reduced exercise capacity in early-stage breast cancer patients treated with chemotherapy.
    Hucteau E; Mallard J; Pivot X; Schott R; Pflumio C; Trensz P; Favret F; Pagano AF; Hureau TJ
    Eur J Appl Physiol; 2023 Jul; 123(7):1567-1581. PubMed ID: 36939876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise-Induced Fatigue in Hamstring versus Quadriceps Muscles and Consequences on the Torque-Duration Relationship in Men.
    Massamba A; Hucteau E; Mallard J; Ducrocq GP; Favret F; Hureau TJ
    Med Sci Sports Exerc; 2022 Dec; 54(12):2099-2108. PubMed ID: 35868018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of skeletal muscle mitochondria and sex on critical torque and performance fatiguability in humans.
    McDougall RM; Tripp TR; Frankish BP; Doyle-Baker PK; Lun V; Wiley JP; Aboodarda SJ; MacInnis MJ
    J Physiol; 2023 Dec; 601(23):5295-5316. PubMed ID: 37902588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Contraction Mode in Determining Exercise Tolerance, Torque-Duration Relationship, and Neuromuscular Fatigue.
    Ducrocq GP; Al Assad SH; Kouzkouz N; Hureau TJ
    Med Sci Sports Exerc; 2023 Jul; 55(7):1218-1231. PubMed ID: 36878018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex differences in fatigability and recovery relative to the intensity-duration relationship.
    Ansdell P; Brownstein CG; Škarabot J; Hicks KM; Howatson G; Thomas K; Hunter SK; Goodall S
    J Physiol; 2019 Dec; 597(23):5577-5595. PubMed ID: 31529693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of critical torque using intermittent isometric maximal voluntary contractions of the quadriceps in humans.
    Burnley M
    J Appl Physiol (1985); 2009 Mar; 106(3):975-83. PubMed ID: 19150854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Declines in muscle contractility and activation during isometric contractions of the knee extensors vary with contraction intensity and exercise volume.
    Marshall PW; Finn HT; Enoka RM
    Exp Physiol; 2021 Oct; 106(10):2096-2106. PubMed ID: 34411379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of resistance training on impulse above end-test torque and muscle fatigue.
    de Menezes Bassan N; Denadai BS; de Lima LCR; Caritá RAC; Abdalla LHP; Greco CC
    Exp Physiol; 2019 Jul; 104(7):1115-1125. PubMed ID: 31131931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central and peripheral contributions to fatigue after electrostimulation training.
    Gondin J; Guette M; Jubeau M; Ballay Y; Martin A
    Med Sci Sports Exerc; 2006 Jun; 38(6):1147-56. PubMed ID: 16775557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct profiles of neuromuscular fatigue during muscle contractions below and above the critical torque in humans.
    Burnley M; Vanhatalo A; Jones AM
    J Appl Physiol (1985); 2012 Jul; 113(2):215-23. PubMed ID: 22556396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. W' reconstitution rate at different intensities above critical torque: the role of muscle size and maximal strength.
    Abdalla LHP; Broxterman RM; Barstow TJ; Greco CC; Denadai BS
    Exp Physiol; 2021 Sep; 106(9):1909-1921. PubMed ID: 34288192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular fatigue development during maximal concentric and isometric knee extensions.
    Babault N; Desbrosses K; Fabre MS; Michaut A; Pousson M
    J Appl Physiol (1985); 2006 Mar; 100(3):780-5. PubMed ID: 16282433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities.
    Schäfer LU; Hayes M; Dekerle J
    Exp Physiol; 2019 Feb; 104(2):209-219. PubMed ID: 30468691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromuscular fatigue following isometric contractions with similar torque time integral.
    Rozand V; Cattagni T; Theurel J; Martin A; Lepers R
    Int J Sports Med; 2015 Jan; 36(1):35-40. PubMed ID: 25285471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolonged depression of knee-extensor torque complexity following eccentric exercise.
    Pethick J; Whiteaway K; Winter SL; Burnley M
    Exp Physiol; 2019 Jan; 104(1):100-111. PubMed ID: 30485571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.