BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 37733664)

  • 21. Engineering Photosensory Modules of Non-Opsin-Based Optogenetic Actuators.
    Lu X; Shen Y; Campbell RE
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32906617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria.
    Endres S; Wingen M; Torra J; Ruiz-González R; Polen T; Bosio G; Bitzenhofer NL; Hilgers F; Gensch T; Nonell S; Jaeger KE; Drepper T
    Sci Rep; 2018 Oct; 8(1):15021. PubMed ID: 30301917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A photoconversion model for full spectral programming and multiplexing of optogenetic systems.
    Olson EJ; Tzouanas CN; Tabor JJ
    Mol Syst Biol; 2017 Apr; 13(4):926. PubMed ID: 28438832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial complementary chromatic acclimation gene expression system in Escherichia coli.
    Ariyanti D; Ikebukuro K; Sode K
    Microb Cell Fact; 2021 Jul; 20(1):128. PubMed ID: 34225717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photodegradable by Yellow-Orange Light degFusionRed Optogenetic Module with Autocatalytically Formed Chromophore.
    Chernov KG; Manoilov KY; Oliinyk OS; Shcherbakova DM; Verkhusha VV
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural Basis of Design and Engineering for Advanced Plant Optogenetics.
    Banerjee S; Mitra D
    Trends Plant Sci; 2020 Jan; 25(1):35-65. PubMed ID: 31699521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optogenetics for gene expression in mammalian cells.
    Müller K; Naumann S; Weber W; Zurbriggen MD
    Biol Chem; 2015 Feb; 396(2):145-52. PubMed ID: 25153239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light-inducible flux control of triosephosphate isomerase on glycolysis in Escherichia coli.
    Senoo S; Tandar ST; Kitamura S; Toya Y; Shimizu H
    Biotechnol Bioeng; 2019 Dec; 116(12):3292-3300. PubMed ID: 31429924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Challenges for Therapeutic Applications of Opsin-Based Optogenetic Tools in Humans.
    Shen Y; Campbell RE; Côté DC; Paquet ME
    Front Neural Circuits; 2020; 14():41. PubMed ID: 32760252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photocaged Arabinose: A Novel Optogenetic Switch for Rapid and Gradual Control of Microbial Gene Expression.
    Binder D; Bier C; Grünberger A; Drobietz D; Hage-Hülsmann J; Wandrey G; Büchs J; Kohlheyer D; Loeschcke A; Wiechert W; Jaeger KE; Pietruszka J; Drepper T
    Chembiochem; 2016 Feb; 17(4):296-9. PubMed ID: 26677142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optogenetic control of calcium influx in mammalian cells.
    Lee YT; Chen R; Zhou Y; He L
    Methods Enzymol; 2021; 654():255-270. PubMed ID: 34120716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optogenetics in plants.
    Christie JM; Zurbriggen MD
    New Phytol; 2021 Mar; 229(6):3108-3115. PubMed ID: 33064858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optogenetics in bacteria - applications and opportunities.
    Lindner F; Diepold A
    FEMS Microbiol Rev; 2022 Mar; 46(2):. PubMed ID: 34791201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optogenetic Module for Dichromatic Control of c-di-GMP Signaling.
    Ryu MH; Fomicheva A; Moskvin OV; Gomelsky M
    J Bacteriol; 2017 Sep; 199(18):. PubMed ID: 28320886
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering an E. coli Near-Infrared Light Sensor.
    Ong NT; Olson EJ; Tabor JJ
    ACS Synth Biol; 2018 Jan; 7(1):240-248. PubMed ID: 29091422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosynthesis of Orthogonal Molecules Using Ferredoxin and Ferredoxin-NADP
    Kyriakakis P; Catanho M; Hoffner N; Thavarajah W; Hu VJ; Chao SS; Hsu A; Pham V; Naghavian L; Dozier LE; Patrick GN; Coleman TP
    ACS Synth Biol; 2018 Feb; 7(2):706-717. PubMed ID: 29301067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. LOV to BLUF: flavoprotein contributions to the optogenetic toolkit.
    Christie JM; Gawthorne J; Young G; Fraser NJ; Roe AJ
    Mol Plant; 2012 May; 5(3):533-44. PubMed ID: 22431563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Painting with Rainbows: Patterning Light in Space, Time, and Wavelength for Multiphoton Optogenetic Sensing and Control.
    Brinks D; Adam Y; Kheifets S; Cohen AE
    Acc Chem Res; 2016 Nov; 49(11):2518-2526. PubMed ID: 27786461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An optogenetic upgrade for the Tet-OFF system.
    Müller K; Zurbriggen MD; Weber W
    Biotechnol Bioeng; 2015 Jul; 112(7):1483-7. PubMed ID: 25683779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.