BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 37733664)

  • 41. A Miniaturized Escherichia coli Green Light Sensor with High Dynamic Range.
    Ong NT; Tabor JJ
    Chembiochem; 2018 Jun; 19(12):1255-1258. PubMed ID: 29420866
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multimodal Control of Bacterial Gene Expression by Red and Blue Light.
    Meier SSM; Multamäki E; Ranzani AT; Takala H; Möglich A
    Methods Mol Biol; 2024; 2760():463-477. PubMed ID: 38468104
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optogenetics Manipulation Enables Prevention of Biofilm Formation of Engineered Pseudomonas aeruginosa on Surfaces.
    Pu L; Yang S; Xia A; Jin F
    ACS Synth Biol; 2018 Jan; 7(1):200-208. PubMed ID: 29053252
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An open-hardware platform for optogenetics and photobiology.
    Gerhardt KP; Olson EJ; Castillo-Hair SM; Hartsough LA; Landry BP; Ekness F; Yokoo R; Gomez EJ; Ramakrishnan P; Suh J; Savage DF; Tabor JJ
    Sci Rep; 2016 Nov; 6():35363. PubMed ID: 27805047
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optogenetic and Chemical Induction Systems for Regulation of Transgene Expression in Plants: Use in Basic and Applied Research.
    Omelina ES; Yushkova AA; Motorina DM; Volegov GA; Kozhevnikova EN; Pindyurin AV
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163658
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optical Control of Cell Signaling with Red/Far-Red Light-Responsive Optogenetic Tools in
    Oda S; Sato-Ebine E; Nakamura A; Kimura KD; Aoki K
    ACS Synth Biol; 2023 Mar; 12(3):700-708. PubMed ID: 36802521
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optical control of mammalian endogenous transcription and epigenetic states.
    Konermann S; Brigham MD; Trevino A; Hsu PD; Heidenreich M; Cong L; Platt RJ; Scott DA; Church GM; Zhang F
    Nature; 2013 Aug; 500(7463):472-476. PubMed ID: 23877069
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Near-infrared light-controlled systems for gene transcription regulation, protein targeting and spectral multiplexing.
    Redchuk TA; Kaberniuk AA; Verkhusha VV
    Nat Protoc; 2018 May; 13(5):1121-1136. PubMed ID: 29700485
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Fluorometric Activity Assay for Light-Regulated Cyclic-Nucleotide-Monophosphate Actuators.
    Schumacher CH; Körschen HG; Nicol C; Gasser C; Seifert R; Schwärzel M; Möglich A
    Methods Mol Biol; 2016; 1408():93-105. PubMed ID: 26965118
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A single-chain and fast-responding light-inducible Cre recombinase as a novel optogenetic switch.
    Duplus-Bottin H; Spichty M; Triqueneaux G; Place C; Mangeot PE; Ohlmann T; Vittoz F; Yvert G
    Elife; 2021 Feb; 10():. PubMed ID: 33620312
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control.
    Baumschlager A; Aoki SK; Khammash M
    ACS Synth Biol; 2017 Nov; 6(11):2157-2167. PubMed ID: 29045151
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Guiding lights: recent developments in optogenetic control of biochemical signals.
    Yin T; Wu YI
    Pflugers Arch; 2013 Mar; 465(3):397-408. PubMed ID: 23417571
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optogenetic control of mesenchymal cell fate towards precise bone regeneration.
    Wang W; Huang D; Ren J; Li R; Feng Z; Guan C; Bao B; Cai B; Ling J; Zhou C
    Theranostics; 2019; 9(26):8196-8205. PubMed ID: 31754390
    [No Abstract]   [Full Text] [Related]  

  • 54. Rhodopsin-Based Optogenetics: Basics and Applications.
    Alekseev A; Gordeliy V; Bamberg E
    Methods Mol Biol; 2022; 2501():71-100. PubMed ID: 35857223
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optogenetics - Bringing light into the darkness of mammalian signal transduction.
    Mühlhäuser WW; Fischer A; Weber W; Radziwill G
    Biochim Biophys Acta Mol Cell Res; 2017 Feb; 1864(2):280-292. PubMed ID: 27845208
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthetic Biological Approaches for Optogenetics and Tools for Transcriptional Light-Control in Bacteria.
    Baumschlager A; Khammash M
    Adv Biol (Weinh); 2021 May; 5(5):e2000256. PubMed ID: 34028214
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extending the Anion Channelrhodopsin-Based Toolbox for Plant Optogenetics.
    Zhou Y; Ding M; Duan X; Konrad KR; Nagel G; Gao S
    Membranes (Basel); 2021 Apr; 11(4):. PubMed ID: 33919843
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Clinical applicability of optogenetic gene regulation.
    Wichert N; Witt M; Blume C; Scheper T
    Biotechnol Bioeng; 2021 Nov; 118(11):4168-4185. PubMed ID: 34287844
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optophysiology: Illuminating cell physiology with optogenetics.
    Tan P; He L; Huang Y; Zhou Y
    Physiol Rev; 2022 Jul; 102(3):1263-1325. PubMed ID: 35072525
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Light-Inducible Recombinases for Bacterial Optogenetics.
    Sheets MB; Wong WW; Dunlop MJ
    ACS Synth Biol; 2020 Feb; 9(2):227-235. PubMed ID: 31961670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.