These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 37733958)
1. Dramatic Reduction of Silicon Surface Recombination by ALD TiO Shehata MM; Macdonald DH; Black LE ACS Appl Mater Interfaces; 2023 Oct; 15(39):46504-46512. PubMed ID: 37733958 [TBL] [Abstract][Full Text] [Related]
2. Atomic Layer Deposition of Titanium Oxide-Based Films for Semiconductor Applications-Effects of Precursor and Operating Conditions. Matkivskyi V; Leiviskä O; Wenner S; Liu H; Vähänissi V; Savin H; Di Sabatino M; Tranell G Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629812 [TBL] [Abstract][Full Text] [Related]
3. Atomic-Layer-Deposited TiO Matsui T; Bivour M; Hermle M; Sai H ACS Appl Mater Interfaces; 2020 Nov; 12(44):49777-49785. PubMed ID: 33089680 [TBL] [Abstract][Full Text] [Related]
4. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks. Xiang Y; Zhou C; Jia E; Wang W Nanoscale Res Lett; 2015; 10():137. PubMed ID: 25852428 [TBL] [Abstract][Full Text] [Related]
5. Optimization of a Solution-Processed TiO Beyraghi N; Sahiner MC; Oguz O; Yerci S ACS Appl Mater Interfaces; 2024 Apr; 16(13):16950-16961. PubMed ID: 38502908 [TBL] [Abstract][Full Text] [Related]
6. Silicon Nanowire Heterojunction Solar Cells with an Al Kato S; Kurokawa Y; Gotoh K; Soga T Nanoscale Res Lett; 2019 Mar; 14(1):99. PubMed ID: 30877482 [TBL] [Abstract][Full Text] [Related]
7. Stable chemical enhancement of passivating nanolayer structures grown by atomic layer deposition on silicon. Pain SL; Khorani E; Niewelt T; Wratten A; Walker M; Grant NE; Murphy JD Nanoscale; 2023 Jun; 15(25):10593-10605. PubMed ID: 37284742 [TBL] [Abstract][Full Text] [Related]
8. Atomic Layer Deposition of Defective Amorphous TiO Kim MJ; Bae JS; Jung MJ; Jeon E; Park Y; Khan H; Kwon SH ACS Appl Mater Interfaces; 2023 Oct; 15(39):45732-45744. PubMed ID: 37734915 [TBL] [Abstract][Full Text] [Related]
9. Passivation of InGaAs(001)-(2 × 4) by Self-Limiting Chemical Vapor Deposition of a Silicon Hydride Control Layer. Edmonds M; Kent T; Chagarov E; Sardashti K; Droopad R; Chang M; Kachian J; Park JH; Kummel A J Am Chem Soc; 2015 Jul; 137(26):8526-33. PubMed ID: 26070022 [TBL] [Abstract][Full Text] [Related]
10. Surface passivation of organometal halide perovskites by atomic layer deposition: an investigation of the mechanism of efficient inverted planar solar cells. Zhao R; Zhang K; Zhu J; Xiao S; Xiong W; Wang J; Liu T; Xing G; Wang K; Yang S; Wang X Nanoscale Adv; 2021 Apr; 3(8):2305-2315. PubMed ID: 36133753 [TBL] [Abstract][Full Text] [Related]
11. A Highly Conductive Titanium Oxynitride Electron-Selective Contact for Efficient Photovoltaic Devices. Yang X; Lin Y; Liu J; Liu W; Bi Q; Song X; Kang J; Xu F; Xu L; Hedhili MN; Baran D; Zhang X; Anthopoulos TD; De Wolf S Adv Mater; 2020 Aug; 32(32):e2002608. PubMed ID: 32613655 [TBL] [Abstract][Full Text] [Related]
12. Atomic layer deposition of vanadium oxide films for crystalline silicon solar cells. Costals ER; Masmitjà G; Almache E; Pusay B; Tiwari K; Saucedo E; Raj CJ; Kim BC; Puigdollers J; Martin I; Voz C; Ortega P Mater Adv; 2022 Jan; 3(1):337-345. PubMed ID: 35128416 [TBL] [Abstract][Full Text] [Related]
13. Structural Properties of Al-O Monolayers in SiO Hiller D; Göttlicher J; Steininger R; Huthwelker T; Julin J; Munnik F; Wahl M; Bock W; Schoenaers B; Stesmans A; König D ACS Appl Mater Interfaces; 2018 Sep; 10(36):30495-30505. PubMed ID: 30110151 [TBL] [Abstract][Full Text] [Related]
14. Correlation between in Situ Diagnostics of the Hydrogen Plasma and the Interface Passivation Quality of Hydrogen Plasma Post-Treated a-Si:H in Silicon Heterojunction Solar Cells. Soman A; Nsofor U; Das U; Gu T; Hegedus S ACS Appl Mater Interfaces; 2019 May; 11(17):16181-16190. PubMed ID: 30951278 [TBL] [Abstract][Full Text] [Related]
15. Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition. Wang WC; Lin CW; Chen HJ; Chang CW; Huang JJ; Yang MJ; Tjahjono B; Huang JJ; Hsu WC; Chen MJ ACS Appl Mater Interfaces; 2013 Oct; 5(19):9752-9. PubMed ID: 24028609 [TBL] [Abstract][Full Text] [Related]
16. Passivation mechanism of thermal atomic layer-deposited Al2O3 films on silicon at different annealing temperatures. Zhao Y; Zhou C; Zhang X; Zhang P; Dou Y; Wang W; Cao X; Wang B; Tang Y; Zhou S Nanoscale Res Lett; 2013 Mar; 8(1):114. PubMed ID: 23452508 [TBL] [Abstract][Full Text] [Related]
17. Investigation on the passivated Si/Al2O3 interface fabricated by non-vacuum spatial atomic layer deposition system. Lien SY; Yang CH; Wu KC; Kung CY Nanoscale Res Lett; 2015; 10():93. PubMed ID: 25852389 [TBL] [Abstract][Full Text] [Related]
18. Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al Chen HY; Lu HL; Sun L; Ren QH; Zhang H; Ji XM; Liu WJ; Ding SJ; Yang XF; Zhang DW Sci Rep; 2016 Dec; 6():38486. PubMed ID: 27924911 [TBL] [Abstract][Full Text] [Related]
19. Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates. López G; Ortega PR; Voz C; Martín I; Colina M; Morales AB; Orpella A; Alcubilla R Beilstein J Nanotechnol; 2013; 4():726-31. PubMed ID: 24367740 [TBL] [Abstract][Full Text] [Related]
20. Interfacial Engineering of Cu Li L; Du G; Zhou X; Lin Y; Jiang Y; Gao X; Lu L; Li G; Zhang W; Feng Q; Wang J; Yang L; Li D ACS Appl Mater Interfaces; 2021 Jun; 13(24):28415-28423. PubMed ID: 34120440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]