BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37734236)

  • 1. Review of particle deposition to and removal from clothing, skin, and hair after a radioactive airborne dispersal event.
    Brambilla S; Nelson MA; Brown MJ
    J Environ Radioact; 2023 Dec; 270():107296. PubMed ID: 37734236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dirty bomb source term characterization and downwind dispersion: Review of experimental evidence.
    Brambilla S; Nelson MA; Brown MJ
    J Environ Radioact; 2023 Jul; 263():107166. PubMed ID: 37059048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study to quantify airborne particle deposition onto and resuspension from clothing using a fluorescent-tracking method.
    Ren J; Tang M; Novoselac A
    Build Environ; 2022 Feb; 209():108580. PubMed ID: 34848915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of human physical activity and contaminated clothing type on particle resuspension.
    McDonagh A; Byrne MA
    J Environ Radioact; 2014 Jan; 127():119-26. PubMed ID: 24211670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charging of radioactive and environmental airborne particles.
    Jang GG; Wiechert AI; Kim YH; Ladshaw AP; Spano T; McFarlane J; Myhre K; Song JJ; Yiacoumi S; Tsouris C
    J Environ Radioact; 2022 Jul; 248():106887. PubMed ID: 35487089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clothing as a transport vector for airborne particles: Chamber study.
    Licina D; Nazaroff WW
    Indoor Air; 2018 May; 28(3):404-414. PubMed ID: 29444354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-field investigation of the explosive dispersal of radioactive material based on a reconstructed spherical blast-wave flow.
    Hummel D; Ivan L
    J Environ Radioact; 2017 Jun; 172():30-42. PubMed ID: 28315824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical techniques for charactering radioactive particles deposited in the environment.
    Salbu B; Lind OC
    J Environ Radioact; 2020 Jan; 211():106078. PubMed ID: 31677430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contamination and release of nanomaterials associated with the use of personal protective clothing.
    Tsai CS
    Ann Occup Hyg; 2015 May; 59(4):491-503. PubMed ID: 25582117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity size distributions of radioactive airborne particles in an arid environment: a case study of Kuwait.
    Ismaeel A; Aba A; Al-Shammari H; Al-Boloushi A; Al-Boloushi O; Malak M; Al-Dabbous A; Al-Tamimi S
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):33032-33041. PubMed ID: 32529611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle Density Using Deposition Filters at the Full Scale RDD Experiments.
    Berg R; Gilhuly C; Korpach E; Ungar K
    Health Phys; 2016 May; 110(5):471-80. PubMed ID: 27023034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of radioactive plume transport in the atmosphere including dynamics of particle aggregation and breakup.
    Wiechert AI; Ladshaw AP; Kim YH; Tsouris C; Yiacoumi S
    J Environ Radioact; 2023 Jul; 263():107167. PubMed ID: 37023525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast and simple approach for the estimation of a radiological source from localised measurements after the explosion of a radiological dispersal device.
    Urso L; Kaiser JC; Woda C; Helebrant J; Hulka J; Kuca P; Prouza Z
    Radiat Prot Dosimetry; 2014 Mar; 158(4):453-60. PubMed ID: 24214910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface.
    Ishizuka M; Mikami M; Tanaka TY; Igarashi Y; Kita K; Yamada Y; Yoshida N; Toyoda S; Satou Y; Kinase T; Ninomiya K; Shinohara A
    J Environ Radioact; 2017 Jan; 166(Pt 3):436-448. PubMed ID: 26872744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protecting people against radiation exposure in the event of a radiological attack. A report of The International Commission on Radiological Protection.
    Valentin J;
    Ann ICRP; 2005; 35(1):1-110, iii-iv. PubMed ID: 16164984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of resuspended aerosol in the Chernobyl area. I. Discussion of instrumentation and estimation of measurement uncertainty.
    Garger EK; Kashpur V; Belov G; Demchuk V; Tschiersch J; Wagenpfeil F; Paretzke HG; Besnus F; Holländer W; Martinez-Serrano J; Vintersved I
    Radiat Environ Biophys; 1997 Sep; 36(3):139-48. PubMed ID: 9402630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential Airborne Releases and Deposition of Radionuclides from the Santa Susana Field Laboratory during the Woolsey Fire.
    Rood AS; Mohler HJ; Grogan HA; Mangini C; Caffrey EA; Till JE
    Health Phys; 2023 Apr; 124(4):257-284. PubMed ID: 36749301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle Deposition onto People in a Transit Venue.
    Liljegren JC; Brown DF; Lunden MM; Silcott D
    Health Secur; 2016; 14(4):237-49. PubMed ID: 27400030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental impact and risk assessments and key factors contributing to the overall uncertainties.
    Salbu B
    J Environ Radioact; 2016 Jan; 151 Pt 2():352-60. PubMed ID: 26546475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.