BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37734632)

  • 1. Trithiocyanurate-functionalized hydrochar for effectively removing methylene blue and Pb (II) cationic pollutants.
    Huang SA; Teng HJ; Su YT; Liu XM; Li B
    Environ Pollut; 2023 Nov; 337():122585. PubMed ID: 37734632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile solvent-free radical polymerization to prepare itaconate-functionalized hydrochar for efficient sorption of methylene blue and Pb(II).
    Teng HJ; Xia T; Li C; Guo JZ; Chen L; Wu C; Li B
    Bioresour Technol; 2023 Jun; 377():128943. PubMed ID: 36958679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of polyaminophosphonated-functionalized hydrochar for efficient sorption of Pb(II).
    Li B; Liu JL; Xu H
    Environ Sci Pollut Res Int; 2022 Jul; 29(33):49808-49815. PubMed ID: 35218484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The polyaminocarboxylated modified hydrochar for efficient capturing methylene blue and Cu(II) from water.
    Li B; Lv JQ; Guo JZ; Fu SY; Guo M; Yang P
    Bioresour Technol; 2019 Mar; 275():360-367. PubMed ID: 30597398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel oxone treated hydrochar for the removal of Pb(II) and methylene blue (MB) dye from aqueous solutions.
    Madduri S; Elsayed I; Hassan EB
    Chemosphere; 2020 Dec; 260():127683. PubMed ID: 32758774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of lead ions and methylene blue on acrylate-modified hydrochars.
    Chen Y; Huang SA; Yu K; Guo JZ; Wang YX; Li B
    Bioresour Technol; 2023 Jul; 379():129067. PubMed ID: 37080438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of methylene blue from aqueous solution by modified bamboo hydrochar.
    Qian WC; Luo XP; Wang X; Guo M; Li B
    Ecotoxicol Environ Saf; 2018 Aug; 157():300-306. PubMed ID: 29627414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of methylene blue and Cd(II) onto maleylated modified hydrochar from water.
    Li B; Guo J; Lv K; Fan J
    Environ Pollut; 2019 Nov; 254(Pt B):113014. PubMed ID: 31446359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization and mechanisms of methylene blue removal by foxtail millet shell from aqueous water and reuse in biosorption of Pb(II), Cd(II), Cu(II), and Zn(II) for secondary times.
    He P; Liu J; Ren ZR; Zhang Y; Gao Y; Chen ZQ; Liu X
    Int J Phytoremediation; 2022; 24(4):350-363. PubMed ID: 34410866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple roles of ferric chloride in preparing efficient magnetic hydrochar for sorption of methylene blue from water solutions.
    Sun XN; Yu K; He JH; Chen Y; Guo JZ; Li B
    Bioresour Technol; 2023 Apr; 373():128715. PubMed ID: 36754236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Waste-to-Resource: New application of modified mine silicate waste to remove Pb
    Ghaedi S; Seifpanahi-Shabani K; Sillanpää M
    Chemosphere; 2022 Apr; 292():133412. PubMed ID: 34974049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel, efficient and economical alternative for the removal of toxic organic, inorganic and pathogenic water pollutants using GO-modified PU granular composite.
    Sahu PS; Verma RP; Dabhade AH; Tewari C; Sahoo NG; Saha B
    Environ Pollut; 2023 Jul; 328():121201. PubMed ID: 36738883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash.
    Li R; Liang W; Wang JJ; Gaston LA; Huang D; Huang H; Lei S; Awasthi MK; Zhou B; Xiao R; Zhang Z
    J Environ Manage; 2018 Apr; 212():77-87. PubMed ID: 29428656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste.
    Tran TH; Le AH; Pham TH; Nguyen DT; Chang SW; Chung WJ; Nguyen DD
    Sci Total Environ; 2020 Jul; 725():138325. PubMed ID: 32464744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient removal of heavy metal and antibiotics from wastewater by phosphate-modified hydrochar.
    Qin X; Meng W; Cheng S; Xing B; Shi C; Nie Y; Wang Q; Xia H
    Chemosphere; 2023 Dec; 345():140484. PubMed ID: 37863206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient removal of noxious methylene blue and crystal violet dyes at neutral conditions by reusable montmorillonite/NiFe
    Gomaa H; Abd El-Monaem EM; Eltaweil AS; Omer AM
    Sci Rep; 2022 Sep; 12(1):15499. PubMed ID: 36109538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-modified magnetic nanoparticles with Terminalia arjuna bark extract for the removal of methylene blue and lead (II) from simulated wastewater.
    Das C; Singh S; Bhakta S; Mishra P; Biswas G
    Chemosphere; 2022 Mar; 291(Pt 2):132673. PubMed ID: 34736943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: an application in methylene blue removal by RSM optimization.
    Genli N; Kutluay S; Baytar O; Şahin Ö
    Int J Phytoremediation; 2022; 24(1):88-100. PubMed ID: 34024213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic seeds promoted high-density sulfonic acid-based hydrochar derived from sugar-rich wastewater for removal of methylene blue.
    Jiang X; Jia Y; Ren D; Zhang N; Peng T; Huo Z
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):36872-36882. PubMed ID: 36564685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of novel sandwich nanocomposite as an efficient and regenerable adsorbent for methylene blue and Pb (II) ion removal.
    Li Z; Tang X; Liu K; Huang J; Peng Q; Ao M; Huang Z
    J Environ Manage; 2018 Jul; 218():363-373. PubMed ID: 29704832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.