These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37734861)

  • 41. Mid- and Long-Wave Infrared Optoelectronics via Intraband Transitions in PbS Colloidal Quantum Dots.
    Ramiro I; Özdemir O; Christodoulou S; Gupta S; Dalmases M; Torre I; Konstantatos G
    Nano Lett; 2020 Feb; 20(2):1003-1008. PubMed ID: 31934762
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantum-Size-Effect Tuning Enables Narrowband IR Photodetection with Low Sunlight Interference.
    Pina JM; Vafaie M; Parmar DH; Atan O; Xia P; Zhang Y; Najarian AM; de Arquer FPG; Hoogland S; Sargent EH
    Nano Lett; 2022 Aug; 22(16):6802-6807. PubMed ID: 35969869
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Machine Learning Accelerates Discovery of Optimal Colloidal Quantum Dot Synthesis.
    Voznyy O; Levina L; Fan JZ; Askerka M; Jain A; Choi MJ; Ouellette O; Todorović P; Sagar LK; Sargent EH
    ACS Nano; 2019 Oct; 13(10):11122-11128. PubMed ID: 31539477
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Narrow Near-Infrared Emission from InP QDs Synthesized with Indium(I) Halides and Aminophosphine.
    Yadav R; Kwon Y; Rivaux C; Saint-Pierre C; Ling WL; Reiss P
    J Am Chem Soc; 2023 Mar; 145(10):5970-5981. PubMed ID: 36866828
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transient Measurements and Simulations Correlate Exchange Ligand Concentration and Trap States in Colloidal Quantum Dot Photodetectors.
    Parmar DH; Rehl B; Atan O; Hoogland S; Sargent EH
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59931-59938. PubMed ID: 38085700
    [TBL] [Abstract][Full Text] [Related]  

  • 46. All-Quantum-Dot Infrared Light-Emitting Diodes.
    Yang Z; Voznyy O; Liu M; Yuan M; Ip AH; Ahmed OS; Levina L; Kinge S; Hoogland S; Sargent EH
    ACS Nano; 2015 Dec; 9(12):12327-33. PubMed ID: 26575976
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MoS
    Huo N; Gupta S; Konstantatos G
    Adv Mater; 2017 May; 29(17):. PubMed ID: 28247438
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lead Selenide (PbSe) Colloidal Quantum Dot Solar Cells with >10% Efficiency.
    Ahmad W; He J; Liu Z; Xu K; Chen Z; Yang X; Li D; Xia Y; Zhang J; Chen C
    Adv Mater; 2019 Aug; 31(33):e1900593. PubMed ID: 31222874
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Silicon Surface Passivation for Silicon-Colloidal Quantum Dot Heterojunction Photodetectors.
    Xu Q; Cheong IT; Meng L; Veinot JGC; Wang X
    ACS Nano; 2021 Nov; 15(11):18429-18436. PubMed ID: 34757719
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lattice anchoring stabilizes solution-processed semiconductors.
    Liu M; Chen Y; Tan CS; Quintero-Bermudez R; Proppe AH; Munir R; Tan H; Voznyy O; Scheffel B; Walters G; Kam APT; Sun B; Choi MJ; Hoogland S; Amassian A; Kelley SO; García de Arquer FP; Sargent EH
    Nature; 2019 Jun; 570(7759):96-101. PubMed ID: 31118515
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Colloidal quantum dot materials for next-generation near-infrared optoelectronics.
    Meng L; Xu Q; Zhang J; Wang X
    Chem Commun (Camb); 2024 Jan; 60(9):1072-1088. PubMed ID: 38174780
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-Performance Visible to Mid-Infrared Photodetectors Based on HgTe Colloidal Quantum Dots under Room Temperature.
    Xia K; Gao XD; Fei GT; Xu SH; Liang YF; Qu XX
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38669621
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Large Photomultiplication by Charge-Self-Trapping for High-Response Quantum Dot Infrared Photodetectors.
    Xu K; Ke L; Dou H; Xu R; Zhou W; Wei Q; Sun X; Wang H; Wu H; Li L; Xue J; Chen B; Weng TC; Zheng L; Yu Y; Ning Z
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14783-14790. PubMed ID: 35290029
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solution Annealing Induces Surface Chemical Reconstruction for High-Efficiency PbS Quantum Dot Solar Cells.
    Liu X; Fu T; Liu J; Wang Y; Jia Y; Wang C; Li X; Zhang X; Liu Y
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14274-14283. PubMed ID: 35289178
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Small-Molecule "Charge Driver" enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13.
    Xue J; Wang R; Chen L; Nuryyeva S; Han TH; Huang T; Tan S; Zhu J; Wang M; Wang ZK; Zhang C; Lee JW; Yang Y
    Adv Mater; 2019 Sep; 31(37):e1900111. PubMed ID: 31343086
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cation-Exchange Enables In Situ Preparation of PbSe Quantum Dot Ink for High Performance Solar Cells.
    Yuan M; Hu H; Wang Y; Xia H; Zhang X; Wang B; He Z; Yu M; Tan Y; Shi Z; Li K; Yang X; Yang J; Li M; Chen X; Hu L; Peng X; He J; Chen C; Lan X; Tang J
    Small; 2022 Dec; 18(48):e2205356. PubMed ID: 36251788
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extending the detection limit: innovations in infrared quantum dot photodetectors reaching up to 18 μm.
    Wang CW; Wang QJ
    Light Sci Appl; 2024 Jul; 13(1):154. PubMed ID: 38977660
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress.
    Tang J; Sargent EH
    Adv Mater; 2011 Jan; 23(1):12-29. PubMed ID: 20842658
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct Imprinting of Quasi-3D Nanophotonic Structures into Colloidal Quantum-Dot Devices.
    Tang X; Chen M; Ackerman MM; Melnychuk C; Guyot-Sionnest P
    Adv Mater; 2020 Mar; 32(9):e1906590. PubMed ID: 31957096
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Halide-Amine Co-Passivated Indium Phosphide Colloidal Quantum Dots in Tetrahedral Shape.
    Kim K; Yoo D; Choi H; Tamang S; Ko JH; Kim S; Kim YH; Jeong S
    Angew Chem Int Ed Engl; 2016 Mar; 55(11):3714-8. PubMed ID: 26849683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.