These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37735146)

  • 1. Highly Efficient Depolymerization of Waste Polyesters Enabled by Transesterification/Hydrogenation Relay Under Mild Conditions.
    Hu Y; Zhang S; Xu J; Liu Y; Yu A; Qian J; Xie Y
    Angew Chem Int Ed Engl; 2023 Nov; 62(45):e202312564. PubMed ID: 37735146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of Polyolefin Waste to Liquid Alkanes with Ru-Based Catalysts under Mild Conditions.
    Rorrer JE; Beckham GT; Román-Leshkov Y
    JACS Au; 2021 Jan; 1(1):8-12. PubMed ID: 34467267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalyst characteristics of the composite catalyst of Ru-Sn and Pd for hydrogenation of terephthalic acid.
    Ruijie Z; Haibo J; Lei M; Suohe Y
    RSC Adv; 2023 Sep; 13(39):27036-27045. PubMed ID: 37693087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antarctic Polyester Hydrolases Degrade Aliphatic and Aromatic Polyesters at Moderate Temperatures.
    Blázquez-Sánchez P; Engelberger F; Cifuentes-Anticevic J; Sonnendecker C; Griñén A; Reyes J; Díez B; Guixé V; Richter PK; Zimmermann W; Ramírez-Sarmiento CA
    Appl Environ Microbiol; 2022 Jan; 88(1):e0184221. PubMed ID: 34705547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Polyester Hydrogenolytic Deconstruction via Tandem Catalysis.
    Kratish Y; Marks TJ
    Angew Chem Int Ed Engl; 2022 Feb; 61(9):e202112576. PubMed ID: 34845815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Recycling Processes of Waste Polyethylene Terephthalate Using Solid Catalysts.
    Bohre A; Jadhao PR; Tripathi K; Pant KK; Likozar B; Saha B
    ChemSusChem; 2023 Jul; 16(14):e202300142. PubMed ID: 36972065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-Free Depolymerization of Plastic Waste Enabled by Plastic-Catalyst Interfacial Engineering.
    Bai X; Aireddy DR; Roy A; Ding K
    Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202309949. PubMed ID: 37775978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogenation of Polyesters to Polyether Polyols.
    Stadler BM; Hinze S; Tin S; de Vries JG
    ChemSusChem; 2019 Sep; 12(17):4082-4087. PubMed ID: 31332956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Simple, Selective, and General Catalyst for Ring Closing Depolymerization of Polyesters and Polycarbonates for Chemical Recycling.
    Gallin CF; Lee WW; Byers JA
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202303762. PubMed ID: 37093979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room temperature organocatalyzed reductive depolymerization of waste polyethers, polyesters, and polycarbonates.
    Feghali E; Cantat T
    ChemSusChem; 2015 Mar; 8(6):980-4. PubMed ID: 25706036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Polyester Degradation through Transesterification with Salicylates.
    Kim HJ; Hillmyer MA; Ellison CJ
    J Am Chem Soc; 2021 Sep; 143(38):15784-15790. PubMed ID: 34529416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic Effect in a Ruthenium Catalyst Designed in Nanoporous N-Functionalized Carbon for Efficient Hydrogenation of Heteroarenes.
    Chandra D; Saini S; Bhattacharya S; Bhaumik A; Kamata K; Hara M
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52668-52677. PubMed ID: 33185087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid.
    Yang W; Liu R; Li C; Song Y; Hu C
    Waste Manag; 2021 Nov; 135():267-274. PubMed ID: 34555688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic Transformation of PET and CO
    Li Y; Wang M; Liu X; Hu C; Xiao D; Ma D
    Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202117205. PubMed ID: 34989076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Biobased Long-Chain Polyesters by Acyclic Diene Metathesis Polymerization and Tandem Hydrogenation and Depolymerization with Ethylene.
    Nomura K; Chaijaroen P; Abdellatif MM
    ACS Omega; 2020 Jul; 5(29):18301-18312. PubMed ID: 32743205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the impact of TiO
    Kim T; Nguyen-Phu H; Kwon T; Kang KH; Ro I
    Environ Pollut; 2023 Aug; 331(Pt 2):121876. PubMed ID: 37263565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Hydrogenation of 5-Hydroxymethylfurfural to 1-Hydroxy-2,5-hexanedione by Biochar-Supported Ru Catalysts.
    Longo L; Taghavi S; Ghedini E; Menegazzo F; Di Michele A; Cruciani G; Signoretto M
    ChemSusChem; 2022 Jul; 15(13):e202200437. PubMed ID: 35394696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of Ti-BA efficiently for the catalytic alcoholysis of waste PET using response surface methodology.
    Wen R; Shen G; Yu Y; Xu S; Wei J; Huo Y; Jiang S
    RSC Adv; 2023 Jun; 13(25):17166-17178. PubMed ID: 37304773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyethylene Terephthalate Deconstruction Catalyzed by a Carbon-Supported Single-Site Molybdenum-Dioxo Complex.
    Kratish Y; Li J; Liu S; Gao Y; Marks TJ
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):19857-19861. PubMed ID: 32710506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct conversion of almond waste into value-added liquids using carbon-neutral catalysts: Hydrothermal hydrogenation of almond hulls over a Ru/CNF catalyst.
    Remón J; Sevilla-Gasca R; Frecha E; Pinilla JL; Suelves I
    Sci Total Environ; 2022 Jun; 825():154044. PubMed ID: 35202688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.