These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37736534)

  • 1. Variational coupling of non-matching discretizations across finitely deforming fluid-structure interfaces.
    Kang S; Kwack J; Masud A
    Int J Numer Methods Fluids; 2022 Jun; 94(6):678-718. PubMed ID: 37736534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Variational Multiscale method with immersed boundary conditions for incompressible flows.
    Kang S; Masud A
    Meccanica; 2021 Jun; 56(6):1397-1422. PubMed ID: 37655308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weakly imposed boundary conditions for shear-rate dependent non-Newtonian fluids: application to cardiovascular flows.
    Kang S; Nashar S; Livingston ER; Masud A
    Math Biosci Eng; 2021 May; 18(4):3855-3886. PubMed ID: 34198415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction.
    Kolahdouz EM; Bhalla APS; Scotten LN; Craven BA; Griffith BE
    J Comput Phys; 2021 Oct; 443():. PubMed ID: 34149063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
    Kolahdouz EM; Wells DR; Rossi S; Aycock KI; Craven BA; Griffith BE
    J Comput Phys; 2023 Sep; 488():. PubMed ID: 37214277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood-Artery Interaction in Calcified Aortas and Abdominal Aortic Aneurysms.
    Kang S; Nashar S; Masud A
    Extreme Mech Lett; 2022 Jul; 54():. PubMed ID: 35874896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The domain interface method in non-conforming domain decomposition multifield problems.
    Lloberas-Valls O; Cafiero M; Cante J; Ferrer A; Oliver J
    Comput Mech; 2017; 59(4):579-610. PubMed ID: 32214576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves.
    Kamensky D; Hsu MC; Schillinger D; Evans JA; Aggarwal A; Bazilevs Y; Sacks MS; Hughes TJ
    Comput Methods Appl Mech Eng; 2015 Feb; 284():1005-1053. PubMed ID: 25541566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unified continuum and variational multiscale formulation for fluids, solids, and fluid-structure interaction.
    Liu J; Marsden AL
    Comput Methods Appl Mech Eng; 2018 Aug; 337():549-597. PubMed ID: 30505038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid finite difference/finite element immersed boundary method.
    Griffith BE; Luo X
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28425587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity.
    Vadala-Roth B; Acharya S; Patankar NA; Rossi S; Griffith BE
    Comput Methods Appl Mech Eng; 2020 Jun; 365():. PubMed ID: 32483394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method.
    Lee JH; Griffith BE
    J Comput Phys; 2022 May; 457():. PubMed ID: 35300097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Immersed Interface Method for Discrete Surfaces.
    Kolahdouz EM; Bhalla APS; Craven BA; Griffith BE
    J Comput Phys; 2020 Jan; 400():. PubMed ID: 31802781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waves at a fluid-solid interface: Explicit versus implicit formulation of boundary conditions using a discontinuous Galerkin method.
    Shukla K; Carcione JM; Hesthaven JS; L'heureux E
    J Acoust Soc Am; 2020 May; 147(5):3136. PubMed ID: 32486768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid-structure interaction analysis of bioprosthetic heart valves: Significance of arterial wall deformation.
    Hsu MC; Kamensky D; Bazilevs Y; Sacks MS; Hughes TJ
    Comput Mech; 2014 Oct; 54(4):1055-1071. PubMed ID: 25580046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.
    Krittian S; Janoske U; Oertel H; Böhlke T
    Ann Biomed Eng; 2010 Apr; 38(4):1426-41. PubMed ID: 20058187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The variational multiscale formulation for the fully-implicit log-morphology equation as a tensor-based blood damage model.
    Haßler S; Pauli L; Behr M
    Int J Numer Method Biomed Eng; 2019 Dec; 35(12):e3262. PubMed ID: 31493337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projection Based Semi-Implicit Partitioned Reduced Basis Method for Fluid-Structure Interaction Problems.
    Nonino M; Ballarin F; Rozza G; Maday Y
    J Sci Comput; 2023; 94(1):4. PubMed ID: 36437820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A monolithic fluid-structure interaction framework applied to red blood cells.
    Cetin A; Sahin M
    Int J Numer Method Biomed Eng; 2019 Feb; 35(2):e3171. PubMed ID: 30426712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immersed Methods for Fluid-Structure Interaction.
    Griffith BE; Patankar NA
    Annu Rev Fluid Mech; 2020; 52():421-448. PubMed ID: 33012877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.