These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 37736658)
1. Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO Roy J; Pore S; Roy K Beilstein J Nanotechnol; 2023; 14():939-950. PubMed ID: 37736658 [TBL] [Abstract][Full Text] [Related]
2. Machine Learning for Evaluating the Cytotoxicity of Mixtures of Nano-TiO Sang L; Wang Y; Zong C; Wang P; Zhang H; Guo D; Yuan B; Pan Y Molecules; 2022 Sep; 27(18):. PubMed ID: 36144857 [TBL] [Abstract][Full Text] [Related]
3. Developing random forest based QSAR models for predicting the mixture toxicity of TiO Trinh TX; Seo M; Yoon TH; Kim J NanoImpact; 2022 Jan; 25():100383. PubMed ID: 35559889 [TBL] [Abstract][Full Text] [Related]
4. Risk assessment of heterogeneous TiO Roy J; Ojha PK; Roy K Nanotoxicology; 2019 Jun; 13(5):701-716. PubMed ID: 30938199 [TBL] [Abstract][Full Text] [Related]
5. Understanding mechanism governing the inflammatory potential of metal oxide nanoparticles using periodic table-based descriptors: a nano-QSAR approach. Roy J; Roy K SAR QSAR Environ Res; 2023; 34(6):459-474. PubMed ID: 37350771 [TBL] [Abstract][Full Text] [Related]
6. Efficient predictions of cytotoxicity of TiO Banerjee A; Kar S; Pore S; Roy K Nanotoxicology; 2023 Feb; 17(1):78-93. PubMed ID: 36891579 [TBL] [Abstract][Full Text] [Related]
7. Nano-TiO Wang Y; Gao X; Cheng Y; Peijnenburg WJGM; Dong Z; Fan W Chemosphere; 2023 Jan; 312(Pt 1):137263. PubMed ID: 36400187 [TBL] [Abstract][Full Text] [Related]
8. Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles. Kar S; Yang S Beilstein J Nanotechnol; 2024; 15():1142-1152. PubMed ID: 39290525 [TBL] [Abstract][Full Text] [Related]
9. QNAR modeling of cytotoxicity of mixing nano-TiO Yuan B; Wang P; Sang L; Gong J; Pan Y; Hu Y Ecotoxicol Environ Saf; 2021 Jan; 208():111634. PubMed ID: 33396154 [TBL] [Abstract][Full Text] [Related]
10. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review. Li J; Wang C; Yue L; Chen F; Cao X; Wang Z Ecotoxicol Environ Saf; 2022 Sep; 243():113955. PubMed ID: 35961199 [TBL] [Abstract][Full Text] [Related]
11. Machine learning-enabled nanosafety assessment of multi-metallic alloy nanoparticles modified TiO Regonia PR; Olorocisimo JP; De Los Reyes F; Ikeda K; Pelicano CM NanoImpact; 2022 Oct; 28():100442. PubMed ID: 36436823 [TBL] [Abstract][Full Text] [Related]
12. Application of Ensemble Machine Learning Methods to Estimate the Compressive Strength of Fiber-Reinforced Nano-Silica Modified Concrete. Anjum M; Khan K; Ahmad W; Ahmad A; Amin MN; Nafees A Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146051 [TBL] [Abstract][Full Text] [Related]
13. Modeling and mechanistic understanding of cytotoxicity of metal oxide nanoparticles (MeOxNPs) to Roy J; Roy K Nanotoxicology; 2022 Mar; 16(2):152-164. PubMed ID: 35166631 [TBL] [Abstract][Full Text] [Related]
14. Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae. Miao W; Zhu B; Xiao X; Li Y; Dirbaba NB; Zhou B; Wu H Aquat Toxicol; 2015 Apr; 161():117-26. PubMed ID: 25703175 [TBL] [Abstract][Full Text] [Related]
15. Prediction on the mutagenicity of nitroaromatic compounds using quantum chemistry descriptors based QSAR and machine learning derived classification methods. Hao Y; Sun G; Fan T; Sun X; Liu Y; Zhang N; Zhao L; Zhong R; Peng Y Ecotoxicol Environ Saf; 2019 Dec; 186():109822. PubMed ID: 31634658 [TBL] [Abstract][Full Text] [Related]
16. TiO Fan X; Wang C; Wang P; Hu B; Wang X J Hazard Mater; 2018 Jan; 342():41-50. PubMed ID: 28822248 [TBL] [Abstract][Full Text] [Related]
17. TiO Wang J; Dai H; Nie Y; Wang M; Yang Z; Cheng L; Liu Y; Chen S; Zhao G; Wu L; Guang S; Xu A Ecotoxicol Environ Saf; 2018 Oct; 162():160-169. PubMed ID: 29990727 [TBL] [Abstract][Full Text] [Related]
18. Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOx ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells. Roy J; Roy K Nanotoxicology; 2022 Jun; 16(5):629-644. PubMed ID: 36260491 [TBL] [Abstract][Full Text] [Related]
19. A Nano-QSTR model to predict nano-cytotoxicity: an approach using human lung cells data. Meneses J; González-Durruthy M; Fernandez-de-Gortari E; Toropova AP; Toropov AA; Alfaro-Moreno E Part Fibre Toxicol; 2023 May; 20(1):21. PubMed ID: 37211608 [TBL] [Abstract][Full Text] [Related]
20. Development of QSAR machine learning-based models to forecast the effect of substances on malignant melanoma cells. Ancuceanu R; Dinu M; Neaga I; Laszlo FG; Boda D Oncol Lett; 2019 May; 17(5):4188-4196. PubMed ID: 31007759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]