BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 37736806)

  • 1. CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia.
    Alayoubi AM; Khawaji ZY; Mohammed MA; Mercier FE
    Ann Hematol; 2024 Jun; 103(6):1805-1817. PubMed ID: 37736806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of CRISPR/Cas9 System and CAR-T Cell Therapy: A New Era for Refractory and Relapsed Hematological Malignancies.
    Hu KJ; Yin ETS; Hu YX; Huang H
    Curr Med Sci; 2021 Jun; 41(3):420-430. PubMed ID: 34218353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Based Gene Therapies: From Preclinical to Clinical Treatments.
    Laurent M; Geoffroy M; Pavani G; Guiraud S
    Cells; 2024 May; 13(10):. PubMed ID: 38786024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Advances in gene therapy for β-thalassemia and hemophilia based on the CRISPR/Cas9 technology].
    Bao LW; Zhou YY; Zeng FY
    Yi Chuan; 2020 Oct; 42(10):949-964. PubMed ID: 33229321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment.
    Mollanoori H; Shahraki H; Rahmati Y; Teimourian S
    Hum Immunol; 2018 Dec; 79(12):876-882. PubMed ID: 30261221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strengthening the CAR-T cell therapeutic application using CRISPR/Cas9 technology.
    Sadeqi Nezhad M; Yazdanifar M; Abdollahpour-Alitappeh M; Sattari A; Seifalian A; Bagheri N
    Biotechnol Bioeng; 2021 Oct; 118(10):3691-3705. PubMed ID: 34241908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of CRISPR/Cas9 Delivery to Human Hematopoietic Stem and Progenitor Cells for Therapeutic Genomic Rearrangements.
    Lattanzi A; Meneghini V; Pavani G; Amor F; Ramadier S; Felix T; Antoniani C; Masson C; Alibeu O; Lee C; Porteus MH; Bao G; Amendola M; Mavilio F; Miccio A
    Mol Ther; 2019 Jan; 27(1):137-150. PubMed ID: 30424953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal Gene Correction Approaches for β-hemoglobinopathies Using CRISPR-Cas9 and Adeno-Associated Virus Serotype 6 Donor Templates.
    Lamsfus-Calle A; Daniel-Moreno A; Ureña-Bailén G; Rottenberger J; Raju J; Epting T; Marciano S; Heumos L; Baskaran P; S Antony J; Handgretinger R; Mezger M
    CRISPR J; 2021 Apr; 4(2):207-222. PubMed ID: 33876951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic gene editing in haematological disorders with CRISPR/Cas9.
    Jensen TI; Axelgaard E; Bak RO
    Br J Haematol; 2019 Jun; 185(5):821-835. PubMed ID: 30864164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of CRISPR-Cas9 genome editing tool in cancer immunotherapy.
    Wu HY; Cao CY
    Brief Funct Genomics; 2019 Mar; 18(2):129-132. PubMed ID: 29579146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-mediated gene editing. A promising strategy in hematological disorders.
    Ugalde L; Fañanas S; Torres R; Quintana-Bustamante O; Río P
    Cytotherapy; 2023 Mar; 25(3):277-285. PubMed ID: 36610813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies.
    Paschoudi K; Yannaki E; Psatha N
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Innovative Strategies of Reprogramming Immune System Cells by Targeting CRISPR/Cas9-Based Genome-Editing Tools: A New Era of Cancer Management.
    Allemailem KS; Alsahli MA; Almatroudi A; Alrumaihi F; Al Abdulmonem W; Moawad AA; Alwanian WM; Almansour NM; Rahmani AH; Khan AA
    Int J Nanomedicine; 2023; 18():5531-5559. PubMed ID: 37795042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications and advances of CRISPR-Cas9 in cancer immunotherapy.
    Xia AL; He QF; Wang JC; Zhu J; Sha YQ; Sun B; Lu XJ
    J Med Genet; 2019 Jan; 56(1):4-9. PubMed ID: 29970486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia.
    Zeng S; Lei S; Qu C; Wang Y; Teng S; Huang P
    Hum Genet; 2023 Dec; 142(12):1677-1703. PubMed ID: 37878144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system.
    Lyu C; Shen J; Wang R; Gu H; Zhang J; Xue F; Liu X; Liu W; Fu R; Zhang L; Li H; Zhang X; Cheng T; Yang R; Zhang L
    Stem Cell Res Ther; 2018 Apr; 9(1):92. PubMed ID: 29625575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo LNP-CRISPR Approaches for the Treatment of Hemophilia.
    Lee JH; Han JP
    Mol Diagn Ther; 2024 May; 28(3):239-248. PubMed ID: 38538969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy.
    Li C; Mei H; Hu Y
    Brief Funct Genomics; 2020 May; 19(3):175-182. PubMed ID: 31950135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9.
    Ren J; Zhao Y
    Protein Cell; 2017 Sep; 8(9):634-643. PubMed ID: 28434148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autologous gene therapy for hemoglobinopathies: From bench to patient's bedside.
    Locatelli F; Cavazzana M; Frangoul H; Fuente J; Algeri M; Meisel R
    Mol Ther; 2024 May; 32(5):1202-1218. PubMed ID: 38454604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.