BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 37736880)

  • 1. OXPHOS-targeting drugs in oncology: new perspectives.
    Kalyanaraman B; Cheng G; Hardy M; You M
    Expert Opin Ther Targets; 2023; 27(10):939-952. PubMed ID: 37736880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting the tumor immune microenvironment and immunometabolism using mitochondria-targeted drugs: Challenges and opportunities in racial disparity and cancer outcome research.
    Kalyanaraman B
    FASEB J; 2022 Apr; 36(4):e22226. PubMed ID: 35233843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing OXPHOS inhibitor-mediated alleviation of hypoxia using high-throughput live cell-imaging.
    Beerkens APM; Boreel DF; Nathan JA; Neuzil J; Cheng G; Kalyanaraman B; Hardy M; Adema GJ; Heskamp S; Span PN; Bussink J
    Cancer Metab; 2024 May; 12(1):13. PubMed ID: 38702787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining PEGylated mito-atovaquone with MCT and Krebs cycle redox inhibitors as a potential strategy to abrogate tumor cell proliferation.
    Cheng G; Hardy M; You M; Kalyanaraman B
    Sci Rep; 2022 Mar; 12(1):5143. PubMed ID: 35332210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives.
    Battogtokh G; Choi YS; Kang DS; Park SJ; Shim MS; Huh KM; Cho YY; Lee JY; Lee HS; Kang HC
    Acta Pharm Sin B; 2018 Oct; 8(6):862-880. PubMed ID: 30505656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potent inhibition of tumour cell proliferation and immunoregulatory function by mitochondria-targeted atovaquone.
    Cheng G; Hardy M; Topchyan P; Zander R; Volberding P; Cui W; Kalyanaraman B
    Sci Rep; 2020 Oct; 10(1):17872. PubMed ID: 33087770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An inhibitor of oxidative phosphorylation exploits cancer vulnerability.
    Molina JR; Sun Y; Protopopova M; Gera S; Bandi M; Bristow C; McAfoos T; Morlacchi P; Ackroyd J; Agip AA; Al-Atrash G; Asara J; Bardenhagen J; Carrillo CC; Carroll C; Chang E; Ciurea S; Cross JB; Czako B; Deem A; Daver N; de Groot JF; Dong JW; Feng N; Gao G; Gay J; Do MG; Greer J; Giuliani V; Han J; Han L; Henry VK; Hirst J; Huang S; Jiang Y; Kang Z; Khor T; Konoplev S; Lin YH; Liu G; Lodi A; Lofton T; Ma H; Mahendra M; Matre P; Mullinax R; Peoples M; Petrocchi A; Rodriguez-Canale J; Serreli R; Shi T; Smith M; Tabe Y; Theroff J; Tiziani S; Xu Q; Zhang Q; Muller F; DePinho RA; Toniatti C; Draetta GF; Heffernan TP; Konopleva M; Jones P; Di Francesco ME; Marszalek JR
    Nat Med; 2018 Jul; 24(7):1036-1046. PubMed ID: 29892070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic Targeting of Tumor Cells and Tumor Immune Microenvironment Vulnerabilities.
    Kalyanaraman B; Cheng G; Hardy M
    Front Oncol; 2022; 12():816504. PubMed ID: 35756631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting flavin-containing enzymes eliminates cancer stem cells (CSCs), by inhibiting mitochondrial respiration: Vitamin B2 (Riboflavin) in cancer therapy.
    Ozsvari B; Bonuccelli G; Sanchez-Alvarez R; Foster R; Sotgia F; Lisanti MP
    Aging (Albany NY); 2017 Dec; 9(12):2610-2628. PubMed ID: 29253841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials.
    Yap TA; Daver N; Mahendra M; Zhang J; Kamiya-Matsuoka C; Meric-Bernstam F; Kantarjian HM; Ravandi F; Collins ME; Francesco MED; Dumbrava EE; Fu S; Gao S; Gay JP; Gera S; Han J; Hong DS; Jabbour EJ; Ju Z; Karp DD; Lodi A; Molina JR; Baran N; Naing A; Ohanian M; Pant S; Pemmaraju N; Bose P; Piha-Paul SA; Rodon J; Salguero C; Sasaki K; Singh AK; Subbiah V; Tsimberidou AM; Xu QA; Yilmaz M; Zhang Q; Li Y; Bristow CA; Bhattacharjee MB; Tiziani S; Heffernan TP; Vellano CP; Jones P; Heijnen CJ; Kavelaars A; Marszalek JR; Konopleva M
    Nat Med; 2023 Jan; 29(1):115-126. PubMed ID: 36658425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex Mitochondrial Dysfunction Induced by TPP
    Fuentes-Retamal S; Sandoval-Acuña C; Peredo-Silva L; Guzmán-Rivera D; Pavani M; Torrealba N; Truksa J; Castro-Castillo V; Catalán M; Kemmerling U; Urra FA; Ferreira J
    Cells; 2020 Feb; 9(2):. PubMed ID: 32053908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Derivatives of alkyl gallate triphenylphosphonium exhibit antitumor activity in a syngeneic murine model of mammary adenocarcinoma.
    Peredo-Silva L; Fuentes-Retamal S; Sandoval-Acuña C; Pavani M; Maya JD; Castro-Castillo V; Madrid-Rojas M; Rebolledo S; Kemmerling U; Parra E; Ferreira J
    Toxicol Appl Pharmacol; 2017 Aug; 329():334-346. PubMed ID: 28647477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the Conjugation Density of Triphenylphosphonium Cation on the Mitochondrial Targeting of Poly(amidoamine) Dendrimers.
    Bielski ER; Zhong Q; Brown M; da Rocha SR
    Mol Pharm; 2015 Aug; 12(8):3043-53. PubMed ID: 26158804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mitochondria-targeted imidazole substituted oleic acid 'TPP-IOA' affects mitochondrial bioenergetics and its protective efficacy in cells is influenced by cellular dependence on aerobic metabolism.
    Maddalena LA; Ghelfi M; Atkinson J; Stuart JA
    Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):73-85. PubMed ID: 27836699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dodecyl-TPP Targets Mitochondria and Potently Eradicates Cancer Stem Cells (CSCs): Synergy With FDA-Approved Drugs and Natural Compounds (Vitamin C and Berberine).
    De Francesco EM; Ózsvári B; Sotgia F; Lisanti MP
    Front Oncol; 2019; 9():615. PubMed ID: 31440463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting mitochondrial respiration for the treatment of acute myeloid leukemia.
    Carter JL; Hege K; Kalpage HA; Edwards H; Hüttemann M; Taub JW; Ge Y
    Biochem Pharmacol; 2020 Dec; 182():114253. PubMed ID: 33011159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel inhibitor of the mitochondrial respiratory complex I with uncoupling properties exerts potent antitumor activity.
    Al Assi A; Posty S; Lamarche F; Chebel A; Guitton J; Cottet-Rousselle C; Prudent R; Lafanechère L; Giraud S; Dallemagne P; Suzanne P; Verney A; Genestier L; Castets M; Fontaine E; Billaud M; Cordier-Bussat M
    Cell Death Dis; 2024 May; 15(5):311. PubMed ID: 38697987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACS-010759.
    Pujalte-Martin M; Belaïd A; Bost S; Kahi M; Peraldi P; Rouleau M; Mazure NM; Bost F
    Mol Oncol; 2024 Jan; ():. PubMed ID: 38214418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial medicine--molecular pathology of defective oxidative phosphorylation.
    Fosslien E
    Ann Clin Lab Sci; 2001 Jan; 31(1):25-67. PubMed ID: 11314862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.