BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 37736880)

  • 41. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism.
    Farge T; Saland E; de Toni F; Aroua N; Hosseini M; Perry R; Bosc C; Sugita M; Stuani L; Fraisse M; Scotland S; Larrue C; Boutzen H; Féliu V; Nicolau-Travers ML; Cassant-Sourdy S; Broin N; David M; Serhan N; Sarry A; Tavitian S; Kaoma T; Vallar L; Iacovoni J; Linares LK; Montersino C; Castellano R; Griessinger E; Collette Y; Duchamp O; Barreira Y; Hirsch P; Palama T; Gales L; Delhommeau F; Garmy-Susini BH; Portais JC; Vergez F; Selak M; Danet-Desnoyers G; Carroll M; Récher C; Sarry JE
    Cancer Discov; 2017 Jul; 7(7):716-735. PubMed ID: 28416471
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A mitochondrial based oncology platform for targeting cancer stem cells (CSCs): MITO-ONC-RX.
    Sotgia F; Ozsvari B; Fiorillo M; De Francesco EM; Bonuccelli G; Lisanti MP
    Cell Cycle; 2018; 17(17):2091-2100. PubMed ID: 30257595
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Induction of Mitochondrial Cell Death and Reversal of Anticancer Drug Resistance via Nanocarriers Composed of a Triphenylphosphonium Derivative of Tocopheryl Polyethylene Glycol Succinate.
    Singh Y; Viswanadham KKDR; Pawar VK; Meher J; Jajoriya AK; Omer A; Jaiswal S; Dewangan J; Bora HK; Singh P; Rath SK; Lal J; Mishra DP; Chourasia MK
    Mol Pharm; 2019 Sep; 16(9):3744-3759. PubMed ID: 31441308
    [TBL] [Abstract][Full Text] [Related]  

  • 44. OXPHOS-targeted nanoparticles for boosting photodynamic therapy against hypoxia tumor.
    Gao Y; Li Y; Pan Z; Xu C; Zhang X; Li M; Wang W; Jia F; Wu Y
    Int J Pharm; 2024 Apr; 654():123943. PubMed ID: 38432451
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modulation of oxidative phosphorylation augments antineoplastic activity of mitotic aurora kinase inhibition.
    Zhang Z; Zeng D; Zhang W; Chen A; Lei J; Liu F; Deng B; Zhuo J; He B; Yan M; Lei X; Wang S; Lam EW; Liu Q; Wang Z
    Cell Death Dis; 2021 Sep; 12(10):893. PubMed ID: 34593753
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Teaching the basics of repurposing mitochondria-targeted drugs: From Parkinson's disease to cancer and back to Parkinson's disease.
    Kalyanaraman B
    Redox Biol; 2020 Sep; 36():101665. PubMed ID: 32795938
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A versatile modular preparation strategy for targeted drug delivery systems against multidrug-resistant cancer cells.
    Wang H; Ning X; Wang X; Ding F; Wang Y
    Nanotechnology; 2021 Nov; 33(5):. PubMed ID: 34670212
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation and antitumor activity of triphenylphosphine-based mitochondrial targeting polylactic acid nanoparticles loaded with 7-hydroxyl coumarin.
    Ye L; Yao Q; Xu F; He L; Ding J; Xiao R; Ding L; Luo B
    J Biomater Appl; 2022 Jan; 36(6):1064-1075. PubMed ID: 34338057
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cotargeting of Mitochondrial Complex I and Bcl-2 Shows Antileukemic Activity against Acute Myeloid Leukemia Cells Reliant on Oxidative Phosphorylation.
    Liu F; Kalpage HA; Wang D; Edwards H; Hüttemann M; Ma J; Su Y; Carter J; Li X; Polin L; Kushner J; Dzinic SH; White K; Wang G; Taub JW; Ge Y
    Cancers (Basel); 2020 Aug; 12(9):. PubMed ID: 32847115
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Combined inhibition of HMGCoA reductase and mitochondrial complex I induces tumor regression of BRAF inhibitor-resistant melanomas.
    de Groot E; Varghese S; Tan L; Knighton B; Sobieski M; Nguyen N; Park YS; Powell R; Lorenzi PL; Zheng B; Stephan C; Gopal YNV
    Cancer Metab; 2022 Feb; 10(1):6. PubMed ID: 35193687
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Targeting mitochondria by anthelmintic drug atovaquone sensitizes renal cell carcinoma to chemotherapy and immunotherapy.
    Chen D; Sun X; Zhang X; Cao J
    J Biochem Mol Toxicol; 2018 Sep; 32(9):e22195. PubMed ID: 30004155
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oxidative Phosphorylation as an Emerging Target in Cancer Therapy.
    Ashton TM; McKenna WG; Kunz-Schughart LA; Higgins GS
    Clin Cancer Res; 2018 Jun; 24(11):2482-2490. PubMed ID: 29420223
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Triphenylphosphonium-modified poly(ethylene glycol)-poly(ε-caprolactone) micelles for mitochondria- targeted gambogic acid delivery.
    Xu Y; Wang S; Chan HF; Liu Y; Li H; He C; Li Z; Chen M
    Int J Pharm; 2017 Apr; 522(1-2):21-33. PubMed ID: 28215509
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mitochondrial respiration supports autophagy to provide stress resistance during quiescence.
    Magalhaes-Novais S; Blecha J; Naraine R; Mikesova J; Abaffy P; Pecinova A; Milosevic M; Bohuslavova R; Prochazka J; Khan S; Novotna E; Sindelka R; Machan R; Dewerchin M; Vlcak E; Kalucka J; Stemberkova Hubackova S; Benda A; Goveia J; Mracek T; Barinka C; Carmeliet P; Neuzil J; Rohlenova K; Rohlena J
    Autophagy; 2022 Oct; 18(10):2409-2426. PubMed ID: 35258392
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combination treatment with radiotherapy and a novel oxidative phosphorylation inhibitor overcomes PD-1 resistance and enhances antitumor immunity.
    Chen D; Barsoumian HB; Fischer G; Yang L; Verma V; Younes AI; Hu Y; Masropour F; Klein K; Vellano C; Marszalek J; Davies M; Cortez MA; Welsh J
    J Immunother Cancer; 2020 Jun; 8(1):. PubMed ID: 32581056
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mitochondria as a Novel Target for Cancer Chemoprevention: Emergence of Mitochondrial-targeting Agents.
    Huang M; Myers CR; Wang Y; You M
    Cancer Prev Res (Phila); 2021 Mar; 14(3):285-306. PubMed ID: 33303695
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitochondria-targeted hydroxyurea inhibits OXPHOS and induces antiproliferative and immunomodulatory effects.
    Cheng G; Hardy M; Topchyan P; Zander R; Volberding P; Cui W; Kalyanaraman B
    iScience; 2021 Jun; 24(6):102673. PubMed ID: 34189437
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Targeting cancer stem cell OXPHOS with tailored ruthenium complexes as a new anti-cancer strategy.
    Alcalá S; Villarino L; Ruiz-Cañas L; Couceiro JR; Martínez-Calvo M; Palencia-Campos A; Navarro D; Cabezas-Sainz P; Rodriguez-Arabaolaza I; Cordero-Barreal A; Trilla-Fuertes L; Rubiolo JA; Batres-Ramos S; Vallespinos M; González-Páramos C; Rodríguez J; Gámez-Pozo A; Vara JÁF; Fernández SF; Berlinches AB; Moreno-Mata N; Redondo AMT; Carrato A; Hermann PC; Sánchez L; Torrente S; Fernández-Moreno MÁ; Mascareñas JL; Sainz B
    J Exp Clin Cancer Res; 2024 Jan; 43(1):33. PubMed ID: 38281027
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Targeting Mitochondrial Oxidative Phosphorylation in Glioblastoma Therapy.
    Wu Z; Ho WS; Lu R
    Neuromolecular Med; 2022 Mar; 24(1):18-22. PubMed ID: 34487301
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Verteporfin inhibits oxidative phosphorylation and induces cell death specifically in glioma stem cells.
    Kuramoto K; Yamamoto M; Suzuki S; Sanomachi T; Togashi K; Seino S; Kitanaka C; Okada M
    FEBS J; 2020 May; 287(10):2023-2036. PubMed ID: 31868973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.