BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 37736880)

  • 61. Targeting tumor glycolysis by a mitotropic agent.
    Ganapathy-Kanniappan S
    Expert Opin Ther Targets; 2016; 20(1):1-5. PubMed ID: 26420565
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Medicinal Chemistry Targeting Mitochondria: From New Vehicles and Pharmacophore Groups to Old Drugs with Mitochondrial Activity.
    Catalán M; Olmedo I; Faúndez J; Jara JA
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33217901
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Rational Construction of a Mitochondrial Targeting, Fluorescent Self-Reporting Drug-Delivery Platform for Combined Enhancement of Endogenous ROS Responsiveness.
    Li J; Wei YJ; Yang XL; Wu WX; Zhang MQ; Li MY; Hu ZE; Liu YH; Wang N; Yu XQ
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32432-32445. PubMed ID: 32573194
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bezielle selectively targets mitochondria of cancer cells to inhibit glycolysis and OXPHOS.
    Chen V; Staub RE; Fong S; Tagliaferri M; Cohen I; Shtivelman E
    PLoS One; 2012; 7(2):e30300. PubMed ID: 22319564
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nutrient-sensitizing drug repurposing screen identifies lomerizine as a mitochondrial metabolism inhibitor of chronic myeloid leukemia.
    Khalaf A; de Beauchamp L; Kalkman E; Rattigan K; Himonas E; Jones J; James D; Shokry ESA; Scott MT; Dunn K; Tardito S; Copland M; Sumpton D; Shanks E; Helgason GV
    Sci Transl Med; 2024 Jun; 16(751):eadi5336. PubMed ID: 38865484
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Triphenylphosphonium (TPP)-Based Antioxidants: A New Perspective on Antioxidant Design.
    Wang JY; Li JQ; Xiao YM; Fu B; Qin ZH
    ChemMedChem; 2020 Mar; 15(5):404-410. PubMed ID: 32020724
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Enhanced cytotoxicity to lung cancer cells by mitochondrial delivery of camptothecin.
    Xie J; Wang H; Huang Q; Lin J; Wen H; Miao Y; Lv L; Ruan D; Yu X; Qin L; Zhou Y
    Eur J Pharm Sci; 2023 Oct; 189():106561. PubMed ID: 37562549
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Discovery of a Potent and Oral Available Complex I OXPHOS Inhibitor That Abrogates Tumor Growth and Circumvents MEKi Resistance.
    He P; Feng J; Xia X; Sun Y; He J; Guan T; Peng Y; Zhang X; Liu M; Pang X; Chen Y
    J Med Chem; 2023 May; 66(9):6047-6069. PubMed ID: 37130350
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Targeting Mitochondrial Dysfunction and Oxidative Stress in Activated Microglia using Dendrimer-Based Therapeutics.
    Sharma A; Liaw K; Sharma R; Zhang Z; Kannan S; Kannan RM
    Theranostics; 2018; 8(20):5529-5547. PubMed ID: 30555562
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cyclopamine tartrate, a modulator of hedgehog signaling and mitochondrial respiration, effectively arrests lung tumor growth and progression.
    Kalainayakan SP; Ghosh P; Dey S; Fitzgerald KE; Sohoni S; Konduri PC; Garrossian M; Liu L; Zhang L
    Sci Rep; 2019 Feb; 9(1):1405. PubMed ID: 30723259
    [TBL] [Abstract][Full Text] [Related]  

  • 71. SR18292 exerts potent antitumor effects in multiple myeloma via inhibition of oxidative phosphorylation.
    Xiang Y; Fang B; Liu Y; Yan S; Cao D; Mei H; Wang Q; Hu Y; Guo T
    Life Sci; 2020 Sep; 256():117971. PubMed ID: 32553925
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dual inhibition of oxidative phosphorylation and glycolysis to enhance cancer therapy.
    Sheng X; Wang MM; Zhang GD; Su Y; Fang HB; Yu ZH; Su Z
    Bioorg Chem; 2024 Jun; 147():107325. PubMed ID: 38583247
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo.
    Biswas S; Dodwadkar NS; Deshpande PP; Torchilin VP
    J Control Release; 2012 May; 159(3):393-402. PubMed ID: 22286008
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Prevention of Tumor Growth and Dissemination by In Situ Vaccination with Mitochondria-Targeted Atovaquone.
    Huang M; Xiong D; Pan J; Zhang Q; Wang Y; Myers CR; Johnson BD; Hardy M; Kalyanaraman B; You M
    Adv Sci (Weinh); 2022 Apr; 9(12):e2101267. PubMed ID: 35243806
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The mechanisms of action of mitochondrial targeting agents in cancer: inhibiting oxidative phosphorylation and inducing apoptosis.
    Yang Y; An Y; Ren M; Wang H; Bai J; Du W; Kong D
    Front Pharmacol; 2023; 14():1243613. PubMed ID: 37954849
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition.
    Saito K; Zhang Q; Yang H; Yamatani K; Ai T; Ruvolo V; Baran N; Cai T; Ma H; Jacamo R; Kuruvilla V; Imoto J; Kinjo S; Ikeo K; Moriya K; Suzuki K; Miida T; Kim YM; Vellano CP; Andreeff M; Marszalek JR; Tabe Y; Konopleva M
    Blood Adv; 2021 Oct; 5(20):4233-4255. PubMed ID: 34507353
    [TBL] [Abstract][Full Text] [Related]  

  • 77. OXPHOS inhibitors, metabolism and targeted therapies in cancer.
    Cadassou O; Jordheim LP
    Biochem Pharmacol; 2023 May; 211():115531. PubMed ID: 37019188
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Mitochondrial-targeted purine-based HSP90 antagonist for leukemia therapy.
    Bryant KG; Chae YC; Martinez RL; Gordon JC; Elokely KM; Kossenkov AV; Grant S; Childers WE; Abou-Gharbia M; Altieri DC
    Oncotarget; 2017 Dec; 8(68):112184-112198. PubMed ID: 29348817
    [TBL] [Abstract][Full Text] [Related]  

  • 79. INGN 201: Ad-p53, Ad5CMV-p53, adenoviral p53, p53 gene therapy--introgen, RPR/INGN 201.
    Drugs R D; 2007; 8(3):176-87. PubMed ID: 17472413
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug-Loaded Nanoformulations.
    S Allemailem K; Almatroudi A; Alsahli MA; Aljaghwani A; M El-Kady A; Rahmani AH; Khan AA
    Int J Nanomedicine; 2021; 16():3907-3936. PubMed ID: 34135584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.