These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37737636)

  • 1. Assembling the anaerobic gamma-butyrobetaine to TMA metabolic pathway in
    Dwidar M; Buffa JA; Wang Z; Santos A; Tittle AN; Fu X; Hajjar AM; DiDonato JA; Hazen SL
    mBio; 2023 Oct; 14(5):e0093723. PubMed ID: 37737636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans.
    Koeth RA; Lam-Galvez BR; Kirsop J; Wang Z; Levison BS; Gu X; Copeland MF; Bartlett D; Cody DB; Dai HJ; Culley MK; Li XS; Fu X; Wu Y; Li L; DiDonato JA; Tang WHW; Garcia-Garcia JC; Hazen SL
    J Clin Invest; 2019 Jan; 129(1):373-387. PubMed ID: 30530985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The microbial gbu gene cluster links cardiovascular disease risk associated with red meat consumption to microbiota L-carnitine catabolism.
    Buffa JA; Romano KA; Copeland MF; Cody DB; Zhu W; Galvez R; Fu X; Ward K; Ferrell M; Dai HJ; Skye S; Hu P; Li L; Parlov M; McMillan A; Wei X; Nemet I; Koeth RA; Li XS; Wang Z; Sangwan N; Hajjar AM; Dwidar M; Weeks TL; Bergeron N; Krauss RM; Tang WHW; Rey FE; DiDonato JA; Gogonea V; Gerberick GF; Garcia-Garcia JC; Hazen SL
    Nat Microbiol; 2022 Jan; 7(1):73-86. PubMed ID: 34949826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of an anaerobic pathway for metabolism of l-carnitine-derived γ-butyrobetaine to trimethylamine in human gut bacteria.
    Rajakovich LJ; Fu B; Bollenbach M; Balskus EP
    Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34362844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO.
    Koeth RA; Levison BS; Culley MK; Buffa JA; Wang Z; Gregory JC; Org E; Wu Y; Li L; Smith JD; Tang WHW; DiDonato JA; Lusis AJ; Hazen SL
    Cell Metab; 2014 Nov; 20(5):799-812. PubMed ID: 25440057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation.
    Kuka J; Liepinsh E; Makrecka-Kuka M; Liepins J; Cirule H; Gustina D; Loza E; Zharkova-Malkova O; Grinberga S; Pugovics O; Dambrova M
    Life Sci; 2014 Nov; 117(2):84-92. PubMed ID: 25301199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of an in-vitro batch fermentation (human colon) model for investigating mechanisms of TMA production from choline, L-carnitine and related precursors by the human gut microbiota.
    Day-Walsh P; Shehata E; Saha S; Savva GM; Nemeckova B; Speranza J; Kellingray L; Narbad A; Kroon PA
    Eur J Nutr; 2021 Oct; 60(7):3987-3999. PubMed ID: 33934200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of dietary choline, betaine, and L-carnitine on the generation of trimethylamine-N-oxide in healthy mice.
    Yu ZL; Zhang LY; Jiang XM; Xue CH; Chi N; Zhang TT; Wang YM
    J Food Sci; 2020 Jul; 85(7):2207-2215. PubMed ID: 32572979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Major Increase in Microbiota-Dependent Proatherogenic Metabolite TMAO One Year After Bariatric Surgery.
    Trøseid M; Hov JR; Nestvold TK; Thoresen H; Berge RK; Svardal A; Lappegård KT
    Metab Syndr Relat Disord; 2016 May; 14(4):197-201. PubMed ID: 27081744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of TMAO productivity from carnitine challenge facilitates personalized nutrition and microbiome signatures discovery.
    Wu WK; Panyod S; Liu PY; Chen CC; Kao HL; Chuang HL; Chen YH; Zou HB; Kuo HC; Kuo CH; Liao BY; Chiu THT; Chung CH; Lin AY; Lee YC; Tang SL; Wang JT; Wu YW; Hsu CC; Sheen LY; Orekhov AN; Wu MS
    Microbiome; 2020 Nov; 8(1):162. PubMed ID: 33213511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro exploratory study of dietary strategies based on polyphenol-rich beverages, fruit juices and oils to control trimethylamine production in the colon.
    Bresciani L; Dall'Asta M; Favari C; Calani L; Del Rio D; Brighenti F
    Food Funct; 2018 Dec; 9(12):6470-6483. PubMed ID: 30465688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide.
    Romano KA; Vivas EI; Amador-Noguez D; Rey FE
    mBio; 2015 Mar; 6(2):e02481. PubMed ID: 25784704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methodological considerations for the identification of choline and carnitine-degrading bacteria in the gut.
    Jameson E; Quareshy M; Chen Y
    Methods; 2018 Oct; 149():42-48. PubMed ID: 29684641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota.
    Hoyles L; Jiménez-Pranteda ML; Chilloux J; Brial F; Myridakis A; Aranias T; Magnan C; Gibson GR; Sanderson JD; Nicholson JK; Gauguier D; McCartney AL; Dumas ME
    Microbiome; 2018 Apr; 6(1):73. PubMed ID: 29678198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk.
    Zhu W; Buffa JA; Wang Z; Warrier M; Schugar R; Shih DM; Gupta N; Gregory JC; Org E; Fu X; Li L; DiDonato JA; Lusis AJ; Brown JM; Hazen SL
    J Thromb Haemost; 2018 Sep; 16(9):1857-1872. PubMed ID: 29981269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TMA/TMAO in Hypertension: Novel Horizons and Potential Therapies.
    Zhang WQ; Wang YJ; Zhang A; Ding YJ; Zhang XN; Jia QJ; Zhu YP; Li YY; Lv SC; Zhang JP
    J Cardiovasc Transl Res; 2021 Dec; 14(6):1117-1124. PubMed ID: 33709384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis.
    Wang Z; Roberts AB; Buffa JA; Levison BS; Zhu W; Org E; Gu X; Huang Y; Zamanian-Daryoush M; Culley MK; DiDonato AJ; Fu X; Hazen JE; Krajcik D; DiDonato JA; Lusis AJ; Hazen SL
    Cell; 2015 Dec; 163(7):1585-95. PubMed ID: 26687352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metagenomic data-mining reveals contrasting microbial populations responsible for trimethylamine formation in human gut and marine ecosystems.
    Jameson E; Doxey AC; Airs R; Purdy KJ; Murrell JC; Chen Y
    Microb Genom; 2016 Sep; 2(9):e000080. PubMed ID: 28785417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metaorganismal nutrient metabolism as a basis of cardiovascular disease.
    Brown JM; Hazen SL
    Curr Opin Lipidol; 2014 Feb; 25(1):48-53. PubMed ID: 24362355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruminant meat and milk contain δ-valerobetaine, another precursor of trimethylamine N-oxide (TMAO) like γ-butyrobetaine.
    Servillo L; D'Onofrio N; Giovane A; Casale R; Cautela D; Castaldo D; Iannaccone F; Neglia G; Campanile G; Balestrieri ML
    Food Chem; 2018 Sep; 260():193-199. PubMed ID: 29699662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.