These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37737703)

  • 1. IRMSwin-T: A lightweight shifted windows transformer based on inverted residual structure and residual multi-layer perceptron for rolling bearing fault diagnosis.
    Ding S; Chen R; Liu H; Liu F; Zhang J
    Rev Sci Instrum; 2023 Sep; 94(9):. PubMed ID: 37737703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset.
    Tang H; Gao S; Wang L; Li X; Li B; Pang S
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rolling Bearing Fault Diagnosis Based on Markov Transition Field and Residual Network.
    Yan J; Kan J; Luo H
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Fault Classification and Diagnosis of Rolling Bearing Based on Improved Convolution Neural Network.
    Zhang X; Li J; Wu W; Dong F; Wan S
    Entropy (Basel); 2023 Apr; 25(5):. PubMed ID: 37238492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a new one-dimensional deep convolutional neural network for intelligent fault diagnosis of rolling bearings.
    Xie S; Ren G; Zhu J
    Sci Prog; 2020; 103(3):36850420951394. PubMed ID: 32880535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bearing Fault Reconstruction Diagnosis Method Based on ResNet-152 with Multi-Scale Stacked Receptive Field.
    Yu H; Miao X; Wang H
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fault Diagnosis Method for Rolling Mill Multi Row Bearings Based on AMVMD-MC1DCNN under Unbalanced Dataset.
    Zhao C; Sun J; Lin S; Peng Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent Rolling Bearing Fault Diagnosis Method Using Symmetrized Dot Pattern Images and CBAM-DRN.
    Cui W; Meng G; Gou T; Wang A; Xiao R; Zhang X
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fault Diagnosis of Rolling Bearings Based on a Residual Dilated Pyramid Network and Full Convolutional Denoising Autoencoder.
    Shi H; Chen J; Si J; Zheng C
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WPD-Enhanced Deep Graph Contrastive Learning Data Fusion for Fault Diagnosis of Rolling Bearing.
    Liu R; Wang X; Kumar A; Sun B; Zhou Y
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved re-parameterized visual geometry group network for rolling bearing fault diagnosis.
    Ding S; Chen R; Liu H; Liu F; Zhang J
    Rev Sci Instrum; 2023 Mar; 94(3):035007. PubMed ID: 37012762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-channel Calibrated Transformer with Shifted Windows for few-shot fault diagnosis under sharp speed variation.
    Chen Z; Chen J; Liu S; Feng Y; He S; Xu E
    ISA Trans; 2022 Dec; 131():501-515. PubMed ID: 35551816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rolling Bearing Composite Fault Diagnosis Method Based on Enhanced Harmonic Vector Analysis.
    Lu J; Yin Q; Li S
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intelligent fault diagnosis of rolling bearings under varying operating conditions based on domain-adversarial neural network and attention mechanism.
    Wu H; Li J; Zhang Q; Tao J; Meng Z
    ISA Trans; 2022 Nov; 130():477-489. PubMed ID: 35491253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning.
    Xu G; Liu M; Jiang Z; Söffker D; Shen W
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fault diagnosis method of rolling bearings based on adaptive modified CEEMD and 1DCNN model.
    Gao S; Li T; Zhang Y; Pei Z
    ISA Trans; 2023 Sep; 140():309-330. PubMed ID: 37353365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Transfer Learning Framework with a One-Dimensional Deep Subdomain Adaptation Network for Bearing Fault Diagnosis under Different Working Conditions.
    Zhang R; Gu Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convolutional Neural Network-Based Transformer Fault Diagnosis Using Vibration Signals.
    Li C; Chen J; Yang C; Yang J; Liu Z; Davari P
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bearing Fault Diagnosis via Improved One-Dimensional Multi-Scale Dilated CNN.
    He J; Wu P; Tong Y; Zhang X; Lei M; Gao J
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lightweight Convolutional Neural Network and Its Application in Rolling Bearing Fault Diagnosis under Variable Working Conditions.
    Liu H; Yao D; Yang J; Li X
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31698734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.