These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37737832)

  • 1. A Discrete-Variable Local Diabatic Representation of Conical Intersection Dynamics.
    Gu B
    J Chem Theory Comput; 2023 Oct; 19(19):6557-6563. PubMed ID: 37737832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonadiabatic Conical Intersection Dynamics in the Local Diabatic Representation with Strang Splitting and Fourier Basis.
    Gu B
    J Chem Theory Comput; 2024 Apr; 20(7):2711-2718. PubMed ID: 38536965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Up to a Sign. The Insidious Effects of Energetically Inaccessible Conical Intersections on Unimolecular Reactions.
    Xie C; Malbon CL; Guo H; Yarkony DR
    Acc Chem Res; 2019 Feb; 52(2):501-509. PubMed ID: 30707546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The best of both Reps-Diabatized Gaussians on adiabatic surfaces.
    Meek GA; Levine BG
    J Chem Phys; 2016 Nov; 145(18):184103. PubMed ID: 27846679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A discontinuous basis enables numerically exact solution of the Schrödinger equation around conical intersections in the adiabatic representation.
    Fedorov DA; Levine BG
    J Chem Phys; 2019 Feb; 150(5):054102. PubMed ID: 30736673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-diabatic representations of adiabatic potential energy surfaces coupled by conical intersections including bond breaking: a more general construction procedure and an analysis of the diabatic representation.
    Zhu X; Yarkony DR
    J Chem Phys; 2012 Dec; 137(22):22A511. PubMed ID: 23249048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of Quasi-diabatic Hamiltonians That Accurately Represent
    Shen Y; Yarkony DR
    J Phys Chem A; 2020 Jun; 124(22):4539-4548. PubMed ID: 32374600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the incorporation of the geometric phase in general single potential energy surface dynamics: A removable approximation to ab initio data.
    Malbon CL; Zhu X; Guo H; Yarkony DR
    J Chem Phys; 2016 Dec; 145(23):234111. PubMed ID: 28010097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-adiabatic dynamics close to conical intersections and the surface hopping perspective.
    Malhado JP; Bearpark MJ; Hynes JT
    Front Chem; 2014; 2():97. PubMed ID: 25485263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.
    Meek GA; Levine BG
    J Chem Phys; 2016 May; 144(18):184109. PubMed ID: 27179473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-state diabatic potential energy surfaces of ClH
    Yin Z; Guan Y; Fu B; Zhang DH
    Phys Chem Chem Phys; 2019 Sep; 21(36):20372-20383. PubMed ID: 31498342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The requisite electronic structure theory to describe photoexcited nonadiabatic dynamics: nonadiabatic derivative couplings and diabatic electronic couplings.
    Subotnik JE; Alguire EC; Ou Q; Landry BR; Fatehi S
    Acc Chem Res; 2015 May; 48(5):1340-50. PubMed ID: 25932499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the characterization of three state conical intersections: a quasianalytic theory using a group homomorphism approach.
    Schuurman MS; Yarkony DR
    J Chem Phys; 2006 Mar; 124(12):124109. PubMed ID: 16599664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometric Phase Effects in Nonadiabatic Dynamics near Conical Intersections.
    Ryabinkin IG; Joubert-Doriol L; Izmaylov AF
    Acc Chem Res; 2017 Jul; 50(7):1785-1793. PubMed ID: 28665584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled diabatic potential energy surfaces for studying the nonadiabatic dynamics at conical intersections in angular resolved photodetachment simulations of OHF--->OHF+e-.
    Gómez-Carrasco S; Aguado A; Paniagua M; Roncero O
    J Chem Phys; 2006 Oct; 125(16):164321. PubMed ID: 17092087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Which form of the molecular Hamiltonian is the most suitable for simulating the nonadiabatic quantum dynamics at a conical intersection?
    Choi S; Vaníček J
    J Chem Phys; 2020 Dec; 153(21):211101. PubMed ID: 33291891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the elimination of the electronic structure bottleneck in on the fly nonadiabatic dynamics for small to moderate sized (10-15 atom) molecules using fit diabatic representations based solely on ab initio electronic structure data: The photodissociation of phenol.
    Zhu X; Yarkony DR
    J Chem Phys; 2016 Jan; 144(2):024105. PubMed ID: 26772552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the description of conical intersections--a continuous representation of the local topography of seams of conical intersection of three or more electronic states: a generalization of the two state result.
    Zhu X; Yarkony DR
    J Chem Phys; 2014 Nov; 141(17):174109. PubMed ID: 25381504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the applicability of a wavefunction-free, energy-based procedure for generating first-order non-adiabatic couplings around conical intersections.
    Gonon B; Perveaux A; Gatti F; Lauvergnat D; Lasorne B
    J Chem Phys; 2017 Sep; 147(11):114114. PubMed ID: 28938825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistate, multichannel coupled diabatic state representations of adiabatic states coupled by conical intersections. CH
    Malbon CL; Yarkony DR
    J Chem Phys; 2017 Apr; 146(13):134302. PubMed ID: 28390343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.